
Construct Spectrum SDK

Reference

Manual Order Number: SPV451-030IBW

This document applies to Construct Spectrum SDK Version 4.5 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Readers’ comments are welcomed. Comments may be addressed to the Documentation Department at the
address on the back cover or to the following e-mail address:
Documentation@softwareag.com

� Copyright Software AG 2003
All rights reserved
Printed in the Federal Republic of Germany

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

TABLE OF CONTENTS

PREFACE
Prerequisite Knowledge. 14
Purpose and Structure of this Documentation . 14
How to Use This Documentation . 16

Create a Web Application . 16
Create a Client/Server Application . 17

Without Using the Client Framework . 17
Other Resources. 18

Related Documentation . 18
Construct Spectrum SDK . 18
Construct Spectrum . 19
Natural Construct. 19

Other Documentation . 20
Related Courses . 20

1. INTRODUCTION
What is Construct Spectrum? . 22

Partner Products. 22
Data Dictionary and Repository . 22
Middleware . 22
Programming Languages. 23
Multiple Development Environments . 23

Construct Spectrum Development Environments . 23
Construct Spectrum Administration Subsystem . 24
Construct Windows Interface . 25
Visual Basic. 26

Client/Server Applications . 26
Web Applications . 27

Types of Construct Spectrum Applications. 28
Architecture of Construct Spectrum Applications . 29

Mainframe Server Components. 30
System Functions. 32

Windows Components. 33
Internet Information Server (IIS) Components . 35
Internet/Intranet Components . 35

Overview of the Development Process . 36
– 3 –

Construct Spectrum SDK Reference ___
2. SETTING UP THE MAINFRAME ENVIRONMENT
Overview . 38
Setting Up Predict Definitions. 39

Field Headings. 39
Business Data Types (BDTs) . 40
Default GUI and HTML Controls . 40
Verification Rules . 40
Default Primary Keys and Hold Fields . 41

Define a Default Primary Key . 41
Define a Default Hold Key . 41

Default Business Object Description. 42
Descriptive Browse Fields. 42
File Volume Information in Client/Server Applications . 42

Creating a Domain and Setting Up Security . 43
Step 1: Define the Steplib Chain . 43
Step 2: Define the Domain . 45
Step 3: Define Security for the Domain . 47

3. FEATURES OF THE WIZARDS
Using the Configuration Editor . 50

Invoke the Configuration Editor . 50
Modify the Profile Settings . 52
Create a New Configuration Profile . 55
Modify the Path Settings . 57

Working with Code . 58
Implied User Exits . 58
Preserve Customizations to Generated Code . 58

Regenerating Modules. 59
Regenerate Individual Modules. 59
Regenerate Multiple Modules . 60

Regenerate External Files . 61
Editing Modules . 62
Generating and Reviewing Reports. 63

Access Reports . 63
Review a Stored Report. 64
Specify Report Detail . 66

 Use Reports with a Code Comparison Tool . 67
Using The Spectrum Cache. 68

Overview . 68
Mark Nodes to be Refreshed . 70
Remove Nodes From the Spectrum Cache . 70
– 4 –

___ Table of Contents
4. USING THE BUSINESS-OBJECT-SUPER-MODEL
Overview . 72
Before You Begin . 73

Check the Model Defaults . 73
Set up Default Values in Predict . 73
Establish a Naming Convention . 74
Set Up the Application Environment . 75

Generating Packages . 76
Step 1: Define the Standard Parameters . 77
Step 2: Define the General Package Parameters . 78
Step 3: Define the Specific Package Parameters . 79
Step 4: Create Another Package (Optional) . 81
Step 5: Generate the Modules . 81

Generation Subsystem . 82
Troubleshooting. 83

5. USING ACTIVEX BUSINESS OBJECTS
Overview . 86
Using the ABO Project Wizard . 87

Create the ABO Project . 87
Framework Components for the ABO Project . 91

Using the ABO Wizard . 92
Customizing the ABO . 98

Customize Properties Generated for the ABO . 98
Opt Column . 99

Customize the ABO within User Exits . 100
GetAppService_.SetMethodAndBlocks . 100
ICSTBrowseObject_LogicalKeyInfo.Extra . 100
ICSTPersist_InstanceData.Get.Extra. 100
ICSTPersist_InstanceData.Let.Extra . 100
ICSTPropertyInfo_PropertyInfo.Get.Extra . 101
<CounterPropertyName>.Get.NullList . 101

6. USING THE SUBPROGRAM-PROXY MODEL
Overview . 104
Accessing System Files . 104
Generating a Subprogram Proxy . 105

Step 1: Specify Standard Parameters. 106
Step 2: Specify the Number of Occurrences Returned . 108
Step 3: Add User Exits . 109
Step 4: Generate the Subprogram Proxy . 110
– 5 –

Construct Spectrum SDK Reference ___
Generating Methods . 111
Access the Application Service Definitions . 112
Add a Method . 113

Step 1: Create the Method . 113
Step 2: Update the Application Service Definition . 113
Step 3: Update the Library Image File . 114

Override the Steplib Chain for the Domain . 115
Overriding Block Handling . 116

Default Block Handling. 116
Maintenance Subprogram Blocks Sent to Server . 116
Maintenance Subprogram Blocks Returned to Client . 117
Browse Subprogram Blocks Sent to Server . 118
Browse Subprogram Blocks Returned to Client . 118

Specify Overrides . 118
Step 1: Define Block Handling On Server . 118

Disable a Block Unconditionally. 118
Send Blocks to the Client Conditionally . 119

Step 2: Define Block Handling On Client. 119
Versioning Support . 120

Security Implications. 120
Debugging Support . 120

7. USING BUSINESS DATA TYPES (BDTS)
Overview . 122
Understanding and Using BDTs . 123

Benefits of Using BDTs . 123
Relationship With Visual Basic Data Types . 123
Composition of a BDT . 124

Name . 124
Conversion Routine . 124
Modifiers . 124

Elements of a BDT . 125
BDT Controller . 125

How the Client Framework Uses BDTs . 125
Conversion Routines . 126

ConvertToDisplay Method . 127
ConvertFromDisplay Method . 128
ConvertInPlace Method. 128
CreateSampleString Method . 129

Modifiers . 129
Natural Formats . 130
– 6 –

___ Table of Contents
Handling Errors Returned from a BDT Conversion Routine . 131
How Web Applications Use BDTs . 132
BDTs Supplied With Construct Spectrum . 133

Alpha . 133
Boolean . 133
Time. 134
Numeric . 134
Currency . 135
Date . 136

Referencing BDTs in Predict. 137
Defining BDTs . 138

Name . 138
Modifiers . 138
Natural Formats . 138
Variant Data Types . 139

Returning Conversion Error Information . 140
Handling Runtime Errors . 141
Creating and Customizing BDTs. 141

BDTs and the Client/Server Framework . 141
Understanding the BDT Objects . 141

Create BDT Conversion Routines . 143
Register a BDT . 145
Deregister a BDT. 146
Locate the Conversion Routine for a BDT . 146
Create a Natural-to-BDT Mapper . 147
Other Considerations . 148

Use One Conversion Routine with Multiple BDTs. 148
Placement of the Conversion Routine . 148
Override a Supplied BDT . 149
Reference BDTs in Your Application . 149

BDTs and the Web Framework . 150
Implement BDTs in the Web Framework . 151

Register BDTs in the Web Framework . 151
Register BDT Classes Using the Windows Registry. 152
Explicitly Register BDT Classes . 153

BDT Conversion Object . 154
Create the BDT Class . 156
Other BDT Controller Methods. 157
Create a Natural-to-BDT Mapper . 157

Create One BDT Class with Multiple BDTs. 159
– 7 –

Construct Spectrum SDK Reference ___
8. DEBUGGING YOUR CLIENT/SERVER APPLICATION
Overview . 162

Communication Errors . 162
Communication Error Handling . 162

Traditional Debugging Tools . 163
Construct Spectrum Debugging Tools . 164

Types of Errors . 165
Visual Basic Runtime Errors . 165
Communication Errors . 166
Natural Runtime Errors . 166
Construct Spectrum-Related Errors. 166
Errors that Do Not Return an Error Message . 166

Generating Debug Data . 167
Save Parameter and Debug Data . 167
Set Trace Options . 167

Trace Option(1) . 168
Create Debug Data. 170

Trace Option(2) . 172
Specify Where to Save Debug Data . 172

Access the Maintain User Table Panel . 173
Running Spectrum Dispatch Services Online . 174

Use the INPUT Statement as a Debugging Tool. 174
Using Natural Debugging Tools . 175

Invoke Subprogram Proxies Online . 175
Access the Invoke Proxy Function . 176

Debugging Tools on the Client and Server . 177
Diagnostics Window . 177
Translations Program. 181

Troubleshooting. 183
Registry Usage. 183
SDC.ini . 183
SDCApp.ini . 184
Check for Necessary DLLs . 184
Construct Spectrum Add-In. 184
Useful SDC Properties . 185

Application Object. 185
NaturalDataArea Object . 185
Dispatcher Object . 186
RequestProperty Property . 186
– 8 –

___ Table of Contents
9. DEPLOYING YOUR CLIENT/SERVER APPLICATION
Transferring Data. 190

Data Transfer Utilities . 190
Construct Spectrum Administration Subsystem . 190

Distributing Your Application. 191
Step 1: Create the Executable File. 191
Step 2: Collect Files For Installation. 191
Step 3: Install the Client Application . 192
Step 4: Run the Application . 192

10. USING THE SPECTRUM DISPATCH CLIENT
Overview . 194
Calling a Natural Subprogram. 195

Step 1: Create Parameter Data Area Instances . 195
Step 2: Assign Values to the Fields. 195
Step 3: Use the CallNat Method on the Client . 196
Step 4: Check the Success of the CALLNAT . 196
Summary . 196

Spectrum Dispatch Client Components. 197
Natural Data Area Simulation . 198

Data Area Definitions . 198
Data Area Simulation Objects . 200
Application Object. 201
Create NaturalDataArea Objects . 202
NaturalDataArea Class . 202
Case Sensitivity . 206
Alphanumeric Fields . 206
Fully Qualified Field Names . 206
Redefined Fields . 207
Errors When Compiling. 207
Read Arrays and Structures . 208
Runtime Errors . 209

DataDefinitionArea Class . 209
NaturalFieldDef Class . 210
Client/Server Communication . 213

Level 1 Block Optimization . 213
Application Service Definitions . 215
Dispatcher Objects and Dispatch Service Definitions. 218

Service Selection . 219
Remote Subprogram Invocation . 220
Timeout, Retry, and Resume Handling . 221
Compression and Encryption. 223
– 9 –

Construct Spectrum SDK Reference ___
Tracing. 224
Database Transaction Control . 224
Error Reporting . 225

User Identification and Authentication . 226
Library Image Files and the Steplib Chain . 227

Advanced Features . 228
FieldRef Property . 228
1:V Fields . 233

11. CREATING APPLICATIONS WITHOUT THE FRAMEWORK
Setting Up the Server Components . 236

Create or Select Application Services . 236
No Terminal I/O . 236
Subprogram Interface . 236
No Global Data Area (GDA). 236
Parameter Data Area (PDA) Data Size Limitation . 237
Subprogram Behavior . 237
Externalize Parameters . 237
Timing Issues. 237

Example of Creating a Simple Natural Subprogram . 238
Generating Subprogram Proxies . 240

Subprogram-Proxy Model . 240
Application Service Definition . 242

Creating the Library Image Files (LIFs) . 244
Construct Spectrum Add-In. 244

Before You Start . 244
Download Definitions . 245

Developing the Client Application . 248
Step 1: Create a New Project. 249
Step 2: Add a Reference to the SDC Object Library. 249
Step 3: Write Code to Initialize the SDC . 250
Step 4: Create the User Interface. 251
Step 5: Write Code to Call the Subprogram . 252
Step 6: Run the Application . 253

APPENDIX A: GLOSSARY .255

APPENDIX B: UTILITIES .271
Response Subprogram . 272

Features and Benefits . 272
Response Length Limitation . 272
Supported Methods . 272
– 10 –

___ Table of Contents
Message Protocol. 273
Call Interface . 273

SPAREPLY Data Area . 274
SPAREPM Data Area . 276

Spectrum Interface Subprogram . 278
Features and Benefits . 278

Broker Error Handling . 278
Error Logging . 278
Shutdown Requests . 278
Server Timeouts. 278
Command Handling. 279

SPUETB Interface . 279
Data Areas . 280

SPAETB Data Area . 280
ETBCB Data Area . 285
SEND-BUFFER . 285
RECEIVE-BUFFER . 285
RESERVED-AREA . 286
CDPDA-M. 286

Using SPUETB . 286
CMD TRACE . 286

Valid Keywords . 287
Trace Response . 288
Test the Trace Facility . 288
CMD CALLNAT . 288

Conversation Factory Utility . 289
Character Translation Subprogram . 290

Determine a Character Set . 290
Multi-Tasking Verification Utility . 291
Log Utilities. 292

Spectrum Log Utilities . 292
Construct Spectrum Control Record Log Utilities . 293
Domain Log Utilities. 294
Spectrum Group Log Utilities . 295
Application Service Definition Log Utilities . 296
Spectrum Steplib Log Utilities . 297
User and Group Log Utilities . 298

INDEX .299
– 11 –

Construct Spectrum SDK Reference ___
– 12 –

__
P

PREFACE

Welcome to Construct Spectrum SDK Reference, a reference tool for developers using
the Construct Spectrum software development kit (SDK). This preface will help you get
the most out of the documentation and find other sources of information about creating
Construct Spectrum applications.

The following topics are covered:

• Prerequisite Knowledge, page 14

• Purpose and Structure of this Documentation, page 14

• How to Use This Documentation, page 16

• Other Resources, page 18
– 13 –

Construct Spectrum SDK Reference __
P

Prerequisite Knowledge
This documentation does not provide information about the following topics. We as-
sume that you are either familiar with the topics or have access to other sources of
information about them.

• Natural Construct

• Microsoft Visual Basic

• Predict

• Natural programming language and environment

• Entire Broker

• Entire Net-Work

See Other Resources, page 18, for sources of information about Natural Construct and
Construct Spectrum.

Note: The examples used in this guide are from the Construct Windows interface.
For examples from the Generation subsystem, see the appropriate chapter in
Natural Construct Generation.

Purpose and Structure of this Documentation
Construct Spectrum SDK Reference is designed to help developers create client/server
and web applications and to customize, debug, and deploy applications. For informa-
tion about how to use this document, see How to Use This Documentation, page 16.

The following table describes the information contained in each chapter:

Chapter Title Topics

1 Introduction, page 21 Describes the components of Construct
Spectrum and the architecture of the
applications you can create using the
software development kit (SDK).

2 Setting up the
Mainframe
Environment, page 37

Describes the tasks you must perform on
the mainframe before generating a client/
server or web application.

3 Features of the
Wizards, page 49

Introduces you to the Construct Spectrum
Add-In tools used to build, customize,
and support Spectrum web and ABO
projects.
– 14 –

__ Preface
P

4 Using the Business-
Object-Super-
Model, page 71

Describes how to generate multiple
Natural components using the Business-
Object-Super-Model.

5 Using ActiveX
Business Objects,
page 85

Describes how to generate ActiveX
business objects (ABOs) — Visual Basic
classes that wrap the Spectrum calls
required to communicate with Natural
subprograms exposed by subprogram
proxies.

6 Using the
Subprogram-Proxy
Model, page 103

Describes the subprogram proxy, how to
generate proxies using the Subprogram-
Proxy model, and how to customize your
proxy.

7 Using Business
Data Types
(BDTs), page 121

Describes business data types (BDTs) as
they relate to client/server and web
applications.

8 Debugging Your
Client/Server
Application, page 161

Describes how to debug your Construct
Spectrum-generated client/server
applications.

9 Deploying Your
Client/Server
Application, page 189

Describes how to deploy your Construct
Spectrum-generated client/server
applications.

10 Using the Spectrum
Dispatch Client,
page 193

Describes the Spectrum Dispatch Client,
which allows you to make calls from a
client to Natural subprograms running on
a server.

11 Creating Applications
Without the
Framework, page 235

Describes how to create a Construct
Spectrum application without using
Construct-generated components.

Appendix A Appendix A: Glossary,
page 255

Contains a glossary of terms used
throughout the Construct Spectrum
documentation set.

Appendix B Appendix B: Utilities,
page 271

Describes the utilities supplied with the
Spectrum Administration subsystem.

Chapter Title Topics (continued)
– 15 –

Construct Spectrum SDK Reference __
P

How to Use This Documentation
Construct Spectrum SDK Reference provides information about core development tasks
that the majority of Construct Spectrum users perform, whether they are creating:

• Construct Spectrum web applications

• Construct Spectrum client/server applications

• Client/server applications without using the Construct Spectrum client framework

The following sections describe how to use this and related guides to perform these
types of tasks.

Create a Web Application
To use Construct Spectrum to create the components of a web application, read:

• Introduction, page 21, for an overview of the product, development process, and the
applications you can develop.

• Setting up the Mainframe Environment, page 37, for detailed information about how
to define domains and security options to control what data users of your application
will access on the mainframe.

• Features of the Wizards, page 49, for information about setting configuration options
for the wizards, using the client-side cache, and modifying code frames.

• Using the Business-Object-Super-Model, page 71, for detailed information about
how to use this model wizard to generate the Natural components of your application.

• Using ActiveX Business Objects, page 85, for detailed information about creating
ABOs and an ABO project to contain them using the wizards supplied with Construct
Spectrum.

• Construct Spectrum SDK for Web Applications for detailed information about creating
the web components of your application.

To customize and regenerate application components, read:

• Using the Subprogram-Proxy Model, page 103

• Using Business Data Types (BDTs), page 121
– 16 –

__ Preface
P

Create a Client/Server Application
To use Construct Spectrum to create a client/server application to run on Windows 95,
Windows 98, Windows 2000, or Windows NT, read:

• Introduction, page 21, for an overview of the product, development process, and the
applications you can develop.

• Setting up the Mainframe Environment, page 37, for detailed information about how
to define domains and security options to control what data users of your application
will access on the mainframe.

• Construct Spectrum SDK for Client/Server Applications for detailed information about
using the VB-Client-Server-Super-Model to generate your application components. It
explains how to set up a Visual Basic project and customize maintenance and browse
dialogs. Also refer to this guide if you want to move existing server-based applications
to the Construct Spectrum client/server architecture.

To customize and regenerate applications components, read:

• Using the Subprogram-Proxy Model, page 103

• Using Business Data Types (BDTs), page 121

• Debugging Your Client/Server Application, page 161

• Deploying Your Client/Server Application, page 189

Without Using the Client Framework
To create a client/server application without using the Construct Spectrum client frame-
work, read:

• Introduction, page 21, for an overview of the product, development process, and ap-
plications you can develop.

• Using the Spectrum Dispatch Client, page 193, for detailed information about the role
of the SDC in client/server communication.

• Creating Applications Without the Framework, page 235, for step-by-step proce-
dures to create your application.
– 17 –

Construct Spectrum SDK Reference __
P

Other Resources
This section provides information about other resources you can use to learn more about
Construct Spectrum and Natural Construct. For more information about these docu-
ments and courses, contact the nearest Software AG office or visit the website at
www.softwareag.com to order documents or view course schedules and locations. You
can also use the website to email questions to Customer Support.

Related Documentation
This section lists other documentation in the Construct Spectrum and Natural Construct
documentation set.

Construct Spectrum SDK
• Construct Spectrum SDK for Microsoft .NET Framework

This guide is for developers creating Microsoft .NET Web services to invoke Natural
subprograms (business objects) over the Inter/Intranet via the W3C SOAP standard.

• Construct Spectrum SDK for Web Applications
This documentation is for developers creating the web components of applications. It
describes how to use the Construct Spectrum wizards in Visual Basic to generate
HTML templates, page handlers, and object factory entries. It also contains detailed in-
formation about customizing, debugging, deploying, and securing web applications.

• Construct Spectrum SDK for Client/Server Applications
This documentation is for developers creating client components for applications that
will run in a Natural mainframe (server) and Windows (client) environment.

• Construct Spectrum Messages
This documentation is for application developers, application administrators, and sys-
tem administrators who want to investigate messages returned by Construct Spectrum
runtime and SDK components.
– 18 –

__ Preface
P

Construct Spectrum
• Construct Spectrum Administration

This guide is for administrators who want to use the Construct Spectrum Administration
subsystem to set up and manage Construct Spectrum applications.

• Construct Spectrum and SDK Vn Release Notes
These notes contain information on new features, enhancements, and other changes in
this version of Construct Spectrum.

• Construct Spectrum Reference
This documentation is for application developers and administrators who need quick
access to information about Construct Spectrum application programming interfaces
(APIs) and utilities.

• Construct Spectrum and SDK Installation Guide for Windows
This documentation describes how to install and set up the Construct Spectrum runtime
and SDK components on the client.

• Construct Spectrum and SDK Installation Guide for Mainframes
This documentation describes how to install and set up the Construct Spectrum runtime
and SDK components on the mainframe.

Natural Construct
• Natural Construct Installation Guide for Mainframes

This documentation provides essential information for setting up the latest version of
Natural Construct, which is needed to operate the Construct Spectrum programming
environment.

• Natural Construct Generation
This documentation describes how to use the Natural Construct models to generate ap-
plications that will run in a mainframe environment.

• Natural Construct Administration and Modeling
This documentation describes how to use the Administration subsystem of Natural
Construct and how to create new models.

• Natural Construct Help Text
This documentation describes how to create online help for applications that run on
server platforms.

• Natural Construct Getting Started Guide
This guide introduces new users to Natural Construct and provides step-by-step instruc-
tions to create several common processes.
– 19 –

Construct Spectrum SDK Reference __
P

Other Documentation
This section lists documents published by WH&O International:

• Natural Construct Tips & Techniques
This book provides a reference of tips and techniques for developing and supporting
Natural Construct applications.

• Natural Construct Application Development User’s Guide
This guide describes the basics of generating Natural Construct modules using the sup-
plied models.

• Natural Construct Study Guide
This guide is intended for programmers who have never used Natural Construct.

Related Courses
In addition to the documentation, the following courses are available from Software
AG:

• A self-study course on Natural Construct fundamentals

• An instructor-led course on building applications with Natural Construct

• An instructor-led course on modifying the existing Natural Construct models or creat-
ing your own models
– 20 –

__
1

INTRODUCTION

This chapter describes the components of Construct Spectrum and the architecture of
the applications you can create with the software development kit (SDK). An overview
of the general steps involved in developing applications will prepare you for the de-
tailed procedures in this and related guides.

The following topics are covered:

• What is Construct Spectrum?, page 22

• Types of Construct Spectrum Applications, page 28

• Architecture of Construct Spectrum Applications, page 29

• Overview of the Development Process, page 36
– 21 –

Construct Spectrum SDK Reference __
1

What is Construct Spectrum?
Construct Spectrum and the software development kit (SDK) comprise a set of middle-
ware and framework components, as well as integrated tools, that use the specifications
you supply to generate the components of a distributed application.

Construct Spectrum comprises two products:

• The SDK is a set of tools, wizards, and framework components you can use to build cli-
ent/server and web applications.

• Construct Spectrum is a middleware product that facilitates communication between
client and server.

Partner Products
Construct Spectrum works with several other products to help you build applications.
The following sections provide a brief overview of these products. For more informa-
tion about these products, consult the appropriate documentation.

Data Dictionary and Repository
Construct Spectrum works closely with Predict, a data dictionary and repository that
manages metadata about the information contained in the database your applications
use. Predict’s “views” of data, and the relationships between data, help you define the
business objects your applications access and maintain. Predict verification rules and
keywords validate and format data and its field definitions automatically select controls
for your applications. You can also use Predict to define the defaults Construct Spec-
trum uses to generate your applications.

Middleware
Construct Spectrum uses Entire Broker, either with Entire Net-Work or configured to
use TCP/IP, to communicate between the client and server components of the
application.

Your applications also use Construct Spectrum’s middleware components — the Spec-
trum Dispatch Client (SDC) and Spectrum dispatch service — to encapsulate calls to
Entire Broker on the client and server and to perform such functions as data translation,
encryption, and compression. When the client makes a communication request, the
SDC translates the request into a compact, secure message and transmits it to the server
via Entire Broker. On the server, the Spectrum dispatch service converts the incoming
processing request by the server application while enforcing multi-level security. Con-
struct Spectrum then uses a similar technique to return the processed result to the client.
– 22 –

__ Introduction
1

Programming Languages
Construct Spectrum applications incorporate Natural and Visual Basic code. You can
also develop client/server applications using other OLE-compliant languages.

To present data dynamically for web applications, generated web pages use JavaScript
and HTML, including the supplied Construct Spectrum HTML replacement tags. For
information, see Using HTML Replacement Tags, page 121, Construct Spectrum
SDK for Web Applications.

Multiple Development Environments
Besides its own development environments, Construct Spectrum provides tools that are
integrated with the Natural and Visual Basic development environments. This allows
you can take advantage of the functionality of each, such as the Natural code editors or
the Visual Basic debugging facilities.

The following section provides information about the Construct Spectrum development
environments.

Construct Spectrum Development Environments
As you develop applications, you will work in at least three environments:

• Construct Spectrum Administration subsystem

• Construct Windows interface

• Visual Basic, using the Construct Spectrum Add-Ins

The following sections describe these environments.
– 23 –

Construct Spectrum SDK Reference __
1

Construct Spectrum Administration Subsystem
Use the Construct Spectrum Administration subsystem on the mainframe to manage
system and application data for your applications:

Construct Spectrum Administration Main Menu

For information about the Construct Spectrum Administration subsystem on the
mainframe, see Construct Spectrum Administration.

 BS__MAIN ***** Construct Spectrum Administration Subsystem ***** CDLAYMN1
 Jul 30 - Main Menu - 10:14 AM

 Functions

 SA System Administration
 AA Application Administration

 ? Help
 . Terminate

 Function __

 Command ___
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit flip main
– 24 –

__ Introduction
1

Construct Windows Interface
Use the Construct Windows interface (CWI) on your PC to generate Natural and Visual
Basic modules for your application:

New Specification Window — Construct Windows Interface

The wizards available in the CWI are available as models in the Generation subsystem
in your Natural Construct mainframe environment. For details about the supplied
models, see Natural Construct Generation.
– 25 –

Construct Spectrum SDK Reference __
1

Visual Basic
Use the Construct Spectrum Add-Ins in Visual Basic to create projects, work with Vi-
sual Basic modules, and generate ActiveX business objects and web components.

Client/Server Applications

For a client/server application, use the Construct Spectrum options on the Visual Basic
Add-Ins menu to:

• Download generated modules from the mainframe server

• Upload modules to the mainframe server

• Create a new project

• Set preferences

The following example shows the Construct Spectrum options on the Add-Ins menu:

Construct Spectrum Options — Visual Basic Add-Ins Menu
– 26 –

__ Introduction
1

Web Applications

For a web application, use the desktop Construct Spectrum project wizards to create
ABO and other projects. Use the options on the Spectrum menu in Visual Basic to:

• Access wizards to generate web components

• Regenerate modules

• Define report options

• Set configuration options

• View the cache of server data

The following example shows the Spectrum menu options:

Spectrum Menu in Visual Basic

You also work with an HTML editor of your choice, the Microsoft Management Con-
sole to manage your Microsoft Internet Information Server on Windows NT, and/or the
Personal Web Server (if you are using Windows to develop applications).

Information about how to access and use these environments is presented where re-
quired throughout this documentation.
– 27 –

Construct Spectrum SDK Reference __
1

Types of Construct Spectrum Applications
Using Construct Spectrum SDK, you can create two kinds of applications:

• Client/server applications that run on Windows or Windows NT (client) and access Nat-
ural components and data on a mainframe (server).
Client/server applications are composed of Natural modules that encapsulate mainte-
nance and query functions on the server, Visual Basic components that function on the
client and present the user interface, and runtime components that communicate be-
tween client and server.

• Web applications that run on IIS and can be accessed with Microsoft Internet Explorer
and Netscape Navigator.
Web applications are composed of Natural modules that encapsulate maintenance and
query functions on the server, ActiveX business objects that communicate between cli-
ent and server components, page handlers that manage the processing of HTML
templates, and HTML templates that present web pages.

This guide describes how to develop components and functionality that are common to
the different types of applications. Information specific to client/server applications is
contained in Construct Spectrum SDK for Client/Server Applications. Information spe-
cific to web applications created with Construct Spectrum is contained in Construct
Spectrum SDK for Web Applications.
– 28 –

__ Introduction
1

Architecture of Construct Spectrum Applications
The following diagram shows the architecture of Natural character-based applications,
client/server applications, and web applications:

Architecture of Construct Spectrum Applications

The following sections describe these components according to the platforms on which
they run: mainframe server, Windows, IIS, and internet or intranet.

Spectrum
Administration

Dispatch
Service

Data

Mainframe Server

Windows

Entire Net-Work or TCP/IP

GUI Dialog Web PageInternet/
Intranet

HTTP

Entire Net-Work or TCP/IP

Visual Basic Business Object

Spectrum Dispatch Client

Entire Broker

Entire Broker

Spectrum Dispatch Client

ActiveX Business Object

Web Application

IIS

Security Service

Character UI

Generated
Spectrum
System

Subprogram Proxy

Natural Subprogram

Entire Broker

Spectrum Dispatch Service
– 29 –

Construct Spectrum SDK Reference __
1

Mainframe Server Components

Component Description

Natural
subprograms

Perform maintenance and browse functions on the mainframe
server. The same set of business objects can be accessed from
character-based Natural applications, client/server
applications, and web applications. This ensures that the
integrity of business data is preserved, independent of the
presentation layer.

Natural subprograms may be either generated by Construct
models or written by hand. The models that generate
subprograms and their parameter data areas (PDAs) are the
VB-Client-Server-Super-Model, Business-Object-Super-
Model, Object-Maint-Subprogram model, and Object-
Browse-Subprogram model.

Natural subprograms can also be written by hand if they follow
certain guidelines. For example, screen I/O functions are not
allowed, and records cannot be held between conversations.

Character UI Non-distributed Natural applications created with Natural
Construct accessing subprograms directly.

Subprogram
proxy

Acts as a bridge between a subprogram and the Spectrum
dispatch service. The subprogram proxy:

• Provides a common interface so that the Spectrum dispatch
service can pass the same set of parameters to any
subprogram proxy

• Issues a CALLNAT to the subprogram

• Converts the parameter data of the subprogram into a
format that can be transmitted between the client and server

• Supports optimization of the data passed through the
network so that only input parameters need to be sent to the
Spectrum dispatch service and only output parameters need
to be returned to the client

• Validates the format and length of the data received from
the client

• Supports debugging features to help uncover
inconsistencies between the data sent by the client and the
data expected by the subprogram proxy

For more information, see Using the Subprogram-Proxy
Model, page 103.
– 30 –

__ Introduction
1

Spectrum dispatch
service

Provides a common interface and Entire Broker services for
Natural subprograms in the application. The main functions of
the Spectrum dispatch service are to:

• Receive requests from the client by way of Entire Broker

• Optionally decompress or decrypt (or both) and translate
the request message (see System Functions, page 32) from
the client’s character set (ASCII) to the server’s character
set (either ASCII or EBCDIC)

• Check security to ensure that the client is allowed to issue
such a request

• Determine the name of the subprogram proxy that handles
the request

• Issue a CALLNAT to the subprogram proxy, passing the
received message as a parameter string

• Optionally compress, encrypt (or both) the message to be
returned (see System Functions, page 32)

• Send information received from the subprogram proxy back
to the client application

Dispatch service
data

Information defined and maintained in the Construct Spectrum
Administration subsystem and accessed by Spectrum dispatch
services anywhere on the network by way of Entire Broker.

Construct Spectrum
Administration
subsystem

Allows system administrators, application administrators, and
application developers to set up and manage system and
application environments. For more information, see
Construct Spectrum Administration.

Security service Checks client requests against security settings defined in the
Construct Spectrum Administration subsystem. This stand-
alone service operates independently of any one Spectrum
dispatch service. Its independence allows the security service
to process, in one central location, the requests of several
Spectrum dispatch services, which may be located on nodes
throughout the network.

For more information about security services and security
settings, see Construct Spectrum Administration.

Entire Broker Transfers messages between Windows or the web server and
the Natural environment. Entire Broker can be configured to
use either native TCP/IP or Entire Net-Work as the transport
layer.

Component Description (continued)
– 31 –

Construct Spectrum SDK Reference __
1

System Functions
All Spectrum dispatch services defined in the Construct Spectrum Administration sub-
system have access to the following common system functions:

Function Description

Return debugging
information

Ensures that all requested debugging information is generated
into the source area. Debugging information is requested by
setting a Trace-Option in the subprogram proxy. The
debugging information is stored as a source member that can
be examined or used to initiate the request locally on the
server, removing the client and the network from the test.

For more information about trace options, see Debugging
Your Client/Server Application, page 161.

Encrypt and
decrypt data

Supplies an interface that can be called by the external
(assembler or C) routines used to encrypt and decrypt data.

Compress and
decompress data

Supplies an interface that can be called by the external
(assembler or C) routines used to compress and decompress
data.

Error handling Manages the capturing of runtime errors, returning the errors
to the client. If possible, this function also restarts the service
that ended with the runtime error.

Message handling Returns a message string based on a message number and
substitution values. The function accepts and updates the data
used by the Spectrum dispatch service to return the message.

Data translation Translates data received from the client into EBCDIC or
ASCII, depending on the requirements of the server.
– 32 –

__ Introduction
1

Windows Components
Construct Spectrum client/server applications run on Windows or Windows NT. The
Windows components are:

Component Description

Entire Broker Transfers messages between the client and the Natural
environment. Entire Broker can be configured to use either
native TCP/IP or Entire Net-Work as the transport layer.

Spectrum Dispatch
Client (SDC)

Component Object Model (COM) middleware component that
enables Construct Spectrum applications to read from, and
write to, variables in a Natural parameter data area (PDA) and
to issue CALLNAT statements to Natural subprograms.

The main functions of the SDC are:

• Natural parameter data area simulation
The SDC defines the parameter data of Natural business
objects as a series of Natural data fields, which may include
structures, arrays, and redefines. To call a business object,
the application must be able to assign values to these
parameter data fields before calling the business object and
then read the fields after the data is returned from the server.

To facilitate this, the SDC simulates Natural parameter data
areas, allowing the application developer to create code that
allocates a data area and reads and writes the fields in the
data area. The Construct Spectrum Add-In can download
Natural parameter data areas (residing in a library on the
server) to the client. This lets the SDC know the structure
(field names and formats) of a parameter data area.
Parameter data areas are stored in the library image file on
the client and only need to be downloaded after creation or
whenever they change on the server.

• CALLNAT simulation
The SDC allows an application to issue a CALLNAT to a
Natural subprogram. To allow this, specify the logical name
of the subprogram to be called, and the list of parameter
data areas to pass to the subprogram, in the client code.

• Encapsulation of Entire Broker calls
The SDC uses Entire Broker calls to communicate with the
Spectrum dispatch service. These calls are not exposed
within the application layer, so the application developer
never needs to code Entire Broker calls.
– 33 –

Construct Spectrum SDK Reference __
1

• Database transaction control
Often, two or more calls to subprograms occur within the
same database transaction such that an END
TRANSACTION statement can be issued if all calls
complete successfully. Also, it is advantageous to have the
client application control the point at which the END
TRANSACTION or BACKOUT TRANSACTION
statement occurs. The SDC and the Spectrum dispatch
service cooperate to provide these capabilities.

For more information, see Using the Spectrum Dispatch
Client, page 193.

Visual Basic
business object

Visual Basic class that acts as an intermediary between a
dialog and the SDC. This class invokes the methods of
subprograms on behalf of dialogs and instantiates all the data
areas required to communicate with a subprogram. Visual
Basic business objects can also perform local data validation to
provide immediate feedback to the user without involving a
network call.

GUI dialog GUI dialogs represent graphical interface screens that
communicate with the user and interact with the Visual Basic
business objects and other framework components to
implement business processes.

Component Description (continued)
– 34 –

__ Introduction
1

Internet Information Server (IIS) Components
Web applications created with Construct Spectrum work with IIS. The IIS components
are:

Internet/Intranet Components
Construct Spectrum-generated web applications support Internet Explorer and
Netscape Navigator browsers at version 4 or higher. For additional functionality:

• Internet Explorer V5 provides improved HTML rendering and the ability to bookmark
web pages in Frames mode.

• Internet Explorer V5.5 and Netscape Navigator V6 support fly-out menus.

Component Description

Entire Broker Transfers messages between the web server and the Natural
environment. Entire Broker can be configured to use either
native TCP/IP or Entire Net-Work as the transport layer.

Spectrum Dispatch
Client

Component Object Model (COM) middleware component that
enables web applications to read from, and write to, variables
in a Natural parameter data area (PDA) and to issue
CALLNAT statements to Natural subprograms. Its main
functions are simulating PDAs and CALLNATs,
encapsulating Entire Broker calls, and controlling database
transactions. As the client counterpart of Spectrum dispatch
services, it is also responsible for such things as data
marshaling, encryption, compression, error-handling, and all
Entire Broker communication.

For more information, see Using the Spectrum Dispatch
Client, page 193.

ActiveX Business
Object

Object that encapsulates all communication with the SDC,
making it efficient to invoke Natural services from the client.
Each back-end business object is represented on the web server
as an ActiveX object.

For more information, see Using ActiveX Business Objects,
page 85.

Web application Consists of framework components supplied with all Construct
Spectrum web projects and components that you generate
using Construct Spectrum wizards. Generated components are
HTML templates, page handlers, and object factory entries.

For more information, see Architecture of a Web
Application, page 23, Construct Spectrum SDK for Web
Applications.
– 35 –

Construct Spectrum SDK Reference __
1

Overview of the Development Process
This section provides an overview of the steps involved in developing a Construct Spec-
trum application. For detailed information, see the following sources:

• For an overview of developing web applications, see Overview of the Development
Procedure, page 28, Construct Spectrum SDK for Web Applications

• For an overview of developing client/server applications, see Overview of the Devel-
opment Procedure, page 30, Construct Spectrum SDK for Client/Server Applications

• For an overview of developing client/server applications without the Construct Spec-
trum framework components, see Creating Applications Without the Framework,
page 235

� To develop a Construct Spectrum application:

1 Plan your application
You will save time and effort by planning as completely as possible the purpose,
functionality, security, and user interface of your application.

2 Set up your application environment
Based on the functionality of your application, ensure that the file, field, and
relationship definitions in Predict support the business objects and business rules your
application will use. Also set up a domain and steplib chain in the Construct Spectrum
Administration subsystem so the application can access the appropriate data. You may
also want to define users, groups, and security settings in this step.

3 Generate application components
Use the Construct Spectrum models and/or wizards to enter specifications for your
application components and generate them. For the first iteration, use the super model
wizards to create multiple components. For Natural modules and client/server Visual
Basic components, use either the models in the Generation subsystem on the mainframe
or the model wizards in the Construct Windows interface. To create a web application,
also use the wizards Construct Spectrum adds to Visual Basic. This step also involves
creating new Visual Basic projects and populating them with components.

4 Customize, test, and debug the application
Customize the look and functionality of your application. This iterative process may
require you to regenerate modules using the individual supplied models.

5 Deploy the application
When your application is fully functional, you are ready to distribute it to users. This
step can involve creating an installation kit and deploying the Construct Spectrum
Administration subsystem.
– 36 –

__
2

SETTING UP THE MAINFRAME
ENVIRONMENT

This chapter describes the tasks you must perform on the mainframe before generating
a client/server or web application.

Note: Before performing the tasks described in this chapter, ensure that all required
software is installed and configured on your server and client. For informa-
tion, see Construct Spectrum and SDK Installation Guide for Mainframes and
Construct Spectrum and SDK Installation Guide for Windows.

The following topics are covered:

• Overview, page 38

• Setting Up Predict Definitions, page 39

• Creating a Domain and Setting Up Security, page 43
– 37 –

Construct Spectrum SDK Reference __
2

Overview
Before you can generate applications, you must complete some setup tasks to ensure
that your application can access the database records it needs and that users will be able
to access the application. The following tasks are involved:

• Set up file and field definitions in Predict. You can also affect how field names and con-
trols are derived and how validations are performed by adjusting Predict settings.

• Create and associate a steplib chain and domain in the Construct Spectrum Administra-
tion Subsystem.

• Set up security privileges for the domain. This involves defining users and groups and
linking them to the domain in the Construct Spectrum Administration subsystem.

This chapter describes these steps in more detail.
– 38 –

___ Setting up the Mainframe Environment
2

Setting Up Predict Definitions
With any application created with Natural Construct or Construct Spectrum, you must
set up file and field definitions in Predict. This includes setting up your application files
and defining their intra- and inter-object relationships.

For information about these tasks, see Design Methodology, page 143, and Use of Pre-
dict in Natural Construct, page 697, Natural Construct Generation.

Predict features that have special implications for Construct Spectrum applications
include:

• Field headings

• Business data types

• Default GUI and HTML controls

• Verification rules

• Primary keys and hold fields

• Default business object description

• Descriptive browse fields

Tip: You can postpone the setup tasks described in this section until a later iteration of
your application. These tasks may be optional and, in all cases, Construct Spec-
trum applies its own values for these setup items based on your existing Predict
file and field definitions.

Field Headings
If a field definition has a heading in Predict, the heading is used to derive the caption
for the control on the dialog or page. If no heading is coded in Predict, the caption is
generated by converting the field name to mixed case and changing special characters
(dashes and underscores) to spaces.

When creating a client/server application, you can change the captions on the form in
Visual Basic.

When creating a web application, you can modify captions using the HTML Template
wizard in Visual Basic. For more information, see Creating and Customizing an
HTML Template, page 91, Construct Spectrum SDK for Web Applications.
– 39 –

Construct Spectrum SDK Reference __
2

Business Data Types (BDTs)
Business data types (BDTs) associate additional formatting with data fields to help en-
sure that data is presented consistently and validated in your application. By default,
generated modules implement basic format and length-checking to ensure that all val-
ues stored on the client are of a valid format and length. BDTs extend this concept by
allowing the use of user-defined data types related to business representations of the da-
ta. For example, a numeric field might be intended to store a currency amount, a net
weight, a date, or a quantity. Each of these values might be presented to the user and
validated in a different way, although they are all defined as numeric fields. For exam-
ple, a credit card number could be stored on the database as a 16-digit value. However,
when this value is placed on a page, it could be shown using the 9999-9999-9999-9999
format. Furthermore, the user could update the value with or without the dashes, and the
BDT will ensure that the unformatted value is assigned back to the database.

To associate a database field with a BDT, assign a special BDT keyword to the field in
Predict. For more information, see Using Business Data Types (BDTs), page 121.

Default GUI and HTML Controls
Construct Spectrum applies complex derivation rules to determine the most appropriate
control to represent a database field. Nevertheless, there may be times when the default
control is not ideal for a particular application. In these cases, you can override the de-
fault control by assigning the database field a special keyword. If you are creating a web
application, you can change some controls in the HTML Template wizard.

For more information, see Overriding GUI Controls, page 133, Construct Spectrum
SDK for Client/Server Applications, or Creating and Customizing an HTML Tem-
plate, page 91, Construct Spectrum SDK for Web Applications.

Verification Rules
Verification rules are used to force the application user to make a selection based on one
or more predetermined choices. For example, if your application has a field where a val-
id month must be entered, you can specify a verification rule for the field so that only a
valid month will be accepted.

One criteria that Construct Spectrum uses to determine the most appropriate GUI or
HTML control for a particular field is the presence of verification rules attached to the
field. In the previous example of presenting valid months, Construct Spectrum would
attach a drop-down combo box to the field in the dialog or page. The user could select
a valid value from the drop-down combo box.

For more information, see Overriding GUI Controls, page 133, Construct Spectrum
SDK for Client/Server Applications, or Creating and Customizing an HTML Tem-
plate, page 91, Construct Spectrum SDK for Web Applications.
– 40 –

___ Setting up the Mainframe Environment
2

Default Primary Keys and Hold Fields
Predict keywords can also be used to designate default primary key values and logical
hold fields for a super model, which reduces the specifications the user must enter.

Define a Default Primary Key
To define a default primary key, specify a descriptor name in the Sequence field for the
file in Predict. Natural Construct observes the following priorities when defaulting a
primary key name for a file:

1 If the value of the default Sequence field for the file is unique and a valid descriptor,
Natural Construct uses this value as the primary key.

2 If the value of the default Sequence field is not unique, Natural Construct reads through
the file and uses a unique descriptor field value as the primary key.

3 If the file does not have a unique descriptor field, but has only one descriptor field,
Natural Construct assumes the value is unique and uses it as the primary key.

Define a Default Hold Key
To define a default logical hold field, attach the HOLD-FIELD keyword to the field in
Predict. (You may have to first define the HOLD-FIELD keyword in Predict using Key-
word Maintenance.) Natural Construct observes the following priorities when
defaulting a hold field name for a file:

1 If the HOLD-FIELD keyword is attached to a field that meets the format criteria for a
hold field, Natural Construct uses this field as the logical hold field.

2 If a field name contains any of the following strings:

– HOLDFIELD

– HOLD-FIELD

– HOLD_FIELD

– TIMESTAMP

– TIME-STAMP

– TIME_STAMP

– LOGCOUNTER

– LOG-COUNTER

– LOG_COUNTER

and the field meets the format criteria for a hold field, Natural Construct uses this field
as the logical hold field.
– 41 –

Construct Spectrum SDK Reference __
2

Default Business Object Description
To specify a default business object description, assign a name to the file’s Literal
Name attribute in Predict. This name is defaulted as the business object description
when using a super model. Additionally, this name is displayed when the file is refer-
enced in error messages.

Descriptive Browse Fields
When the user invokes a browse dialog attached to a field on a maintenance form, it is
referred to as a foreign field browse. When invoked, a foreign field browse displays
only the foreign field values unless you designate other fields in the foreign file as de-
scriptive. For example, suppose you know that the warehouse number field in a
warehouse file will be referenced as a foreign field browse on a number of maintenance
dialogs or pages. To help users select the correct warehouse when browsing, you can
designate another field, such as the Warehouse Name field, as descriptive. When users
browse for a warehouse number, the descriptive value (in this case, a warehouse name)
is displayed, along with the warehouse number.

A descriptive field is designated in Predict by associating a special keyword with the
field. You can indicate that certain fields are descriptive in all situations, while others
are descriptive depending on the form or page that contains the foreign field.

For information about descriptive fields, see Displaying Descriptions for a Foreign
Field, page 289, Construct Spectrum SDK for Client/Server Applications, or Creating
and Customizing an HTML Template, page 91, Construct Spectrum SDK for Web
Applications.

File Volume Information in Client/Server Applications
You can supply information related to the size and stability of your files in Predict.
These values are used to determine the default behavior of a standalone browse dialog
and browse dialogs linked to a maintenance dialog. For more information about linking
browse and maintenance functions, see Integrating Browse and Maintenance Func-
tions, page 275, Construct Spectrum SDK for Client/Server Applications.
– 42 –

___ Setting up the Mainframe Environment
2

Creating a Domain and Setting Up Security
The application environment includes users, application libraries, business objects and
their associated modules. Users are combined into larger entities known as “groups”.
Application libraries, business objects and their associated modules are combined into
larger entities known as “domains”. Before creating an application with Construct
Spectrum, you must define a domain for the application. Before users can access the ap-
plication, you must grant access to the business objects and object methods within the
domain.

� To create a domain and set up security:

� Step 1: Define the Steplib Chain, page 43

� Step 2: Define the Domain, page 45

� Step 3: Define Security for the Domain, page 47

The following sections describe each of these steps in detail.

Step 1: Define the Steplib Chain
The first step in setting up a domain is to define its steplib chain. A steplib chain iden-
tifies where your application libraries reside on the server. To locate and execute
application modules, you must set up a steplib chain and link it to your application
domain.

When defining your steplib chain, keep the following tips in mind:

• Before adding a steplib entry, determine the database ID (DBID) and file number (FNR)
of the FUSER system file you are using.

• The library in which the dispatch service is executing is checked before libraries in the
steplib chain; you do not have to add this library to your steplib chain.

• If you intend to use the default DBID and FNR values for the current FUSER system
file at runtime, you do not have to specify a DBID and FNR value for a library.

• Ensure that you add your FUSER file in the SYSTEM library to the steplib chain. Most
generated applications use the server framework components supplied with Construct
in this file (prefixed with “CD” or “CC”).

• Any components required by your generated methods, such as subprograms, copycode,
or data areas, must be available in your application library or one of its steplibs.

• Both the FUSER and FNAT system libraries are automatically added to your steplib
chain; you do not have to add these libraries to your steplib chain.

Tip: If you are new to Construct Spectrum, set up a sample environment. For example,
set up a sample application library and link it to your sample steplib chain. Use
the same name to identify your application library, steplib chain, and domain.
– 43 –

Construct Spectrum SDK Reference __
2

� To access the Maintain Steplib Table panel:

1 Log onto the SYSSPEC library and enter “MENU” at the Next prompt.
The Construct Spectrum Administration subsystem main menu is displayed.

2 Enter “AA” in the Function field.
The Application Administration main menu is displayed.

3 Enter “MM” in the Function field.
The Application Administration Maintenance menu is displayed.

4 Enter “ST” in the Function field.
The Maintain Steplib Table panel is displayed:

Maintain Steplib Table Panel

5 Add up to eight application libraries to the steplib chain.

6 Record the name of the steplib chain.
You will add the steplib chain to the application domain described in the following
section.

 BSSD__MP ***** Construct Spectrum Administration Subsystem ***** BSSD__11
 Aug 31 - Maintain Steplib Table - 10:55 AM

 *Action (A,B,C,D,M,N,P) _

 Steplib Name............: ________________________________
 +---------------------------+
 | Library DB FNR |
 | -------- ----- ------ |
 | 1 ________ _____ _____ |
 | 2 ________ _____ _____ |
 | 3 ________ _____ _____ |
 | 4 ________ _____ _____ |
 | 5 ________ _____ _____ |
 | 6 ________ _____ _____ |
 | 7 ________ _____ _____ |
 | 8 ________ _____ _____ |
 +---------------------------+

 Direct Command: __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12--
 confm help retrn quit flip pref main
– 44 –

___ Setting up the Mainframe Environment
2

Step 2: Define the Domain
Domains are used to group related business objects and services. You can set up the
same business object in multiple domains. The services assigned to the object can be
different for each domain. For example, if you have a Customer object that is used in
two applications, an Accounts Receivable and a Sales application, the Customer object
in the Accounts Receivable application probably requires different services than a Cus-
tomer object in a Sales application. Consider setting up two domains, one for each
application. Assign services to the Customer object based on the business requirements
addressed by each application.

The following steps describe how to set up a domain and link it to the steplib chain de-
scribed in the previous section, Step 1: Define the Steplib Chain, page 43. By default,
all business objects in the domain are accessed using the same steplib chain. You can,
however, override the steplib chain for each business object and object method. For
more information, see Override the Steplib Chain for the Domain, page 115.

Tip: Specify a steplib chain as high in the application architecture hierarchy as possi-
ble. This prevents you from having to specify the steplib chain in many places. If
the steplib chain applies to an entire application, place it in the appropriate do-
main. If the steplib chain applies to one object only, identify it in the header por-
tion of the application service definition. In this way, only exceptions need be
specified.

� To access the Maintain Domains Table panel:

1 Log onto the SYSSPEC library and enter “MENU” at the Next prompt.
The Construct Spectrum Administration subsystem main menu is displayed.

2 Enter “AA” in the Function field.
The Application Administration main menu is displayed.

3 Enter “MM” in the Function field.
The Application Administration Maintenance menu is displayed.
– 45 –

Construct Spectrum SDK Reference __
2

4 Enter “DO” in the Function field.
The Maintain Domains Table panel is displayed:

Maintain Domains Table Panel

5 Type “A” in the Action field.

6 Type the name of your domain in the Domain Name field.

7 Type a brief description of the domain in the Description field.

8 Type the name of your steplib chain in the Steplibs field.

9 Press Enter to add the domain.
Next, you will link the domain to user groups described in the following section.

Note: Specifying a steplib chain is optional. If no steplib is specified, the Spectrum
dispatch service attempts to locate the business object from the current execu-
tion library and then from the FNAT SYSTEM library.

BSDO__MP Construct Spectrum Administration Subsystem BSDO__11
Jun 27 Maintain Domains Table 4:11 PM

 Action (A,B,C,D,M,N,P) A

 Domain Name.............: SAMPLE__
 Description.............: Sample Domain _________________________
 Steplibs................: SAMPLE__________________________ *

Command: __
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
confm help retrn quit flip pref main
 Domain SAMPLE added successfully
– 46 –

___ Setting up the Mainframe Environment
2

Step 3: Define Security for the Domain
To make your application available to users, you must grant them security privileges.
To set up security, assign users to groups. Groups identify users who require similar ac-
cess privileges to your application. You can then grant groups security privileges to
your application domain. Granting access to a domain enables users to access the ob-
jects and methods within the domain.

Tip: You can postpone this task until after you have created and tested your applica-
tion. At that time, you can better determine what security privileges should be
granted to each group.

For each group granted access to a domain, you can further define security privileges
by granting access to selected objects and methods. For example, assume you have an
application domain called “Payroll” containing all of the objects and methods required
for your organization’s payroll application. Two types of users require access to the
payroll application: managers and data entry personnel. Managers require access to the
entire application, while data entry personnel require access only to input hours, vaca-
tion time, sick time, and so on. You can set up one group for the managers and one for
the data entry personnel. The Manager group is given access to all objects and methods
in the Payroll domain and the Data Entry group is given access only to those objects and
methods required to do their job.

For information about defining users and groups, see Defining Groups and Users,
page 75, Construct Spectrum Administration. For information about defining security
for groups and domains, see Setting Construct Spectrum Security Options, page 95,
Construct Spectrum Administration.
– 47 –

Construct Spectrum SDK Reference __
2

– 48 –

__
3

FEATURES OF THE WIZARDS

This chapter introduces you to the Construct Spectrum Add-In tools used to build, cus-
tomize, and support Spectrum web and ABO projects. These tools include the
Configuration editor, which allows you to customize environmental settings, and the
Regenerate Multiple function, which you can use to regenerate many modules. This
chapter also describes how to use implied user exits and the cst:PRESERVE tag to pro-
tect and preserve custom code as you generate and regenerate modules. The remainder
of this chapter explains the Report and Cache Viewer functions.

The following topics are covered:

• Using the Configuration Editor, page 50

• Working with Code, page 58

• Regenerating Modules, page 59

• Editing Modules, page 62

• Generating and Reviewing Reports, page 63

• Using The Spectrum Cache, page 68
– 49 –

Construct Spectrum SDK Reference __
3

Using the Configuration Editor
The Configuration editor maintains the configuration profiles used in Construct Spec-
trum. Configuration profiles specify global settings, such as Spectrum services, and
generate parameters in your development environment. You can set up a separate con-
figuration profile for each environment you want to access.

Invoke the Configuration Editor
� To invoke the Configuration editor:

1 Select Configuration from the Spectrum menu.
The Configuration editor is displayed, showing the Configuration Profiles tab:

Configuration Editor — Configuration Profiles Tab
– 50 –

__ Features of the Wizards
3

This tab displays all available configuration profiles and the dates they were last mod-
ified. In the example, Spectrum 441 is the active profile.

The following options are available on the Configuration Profiles tab:

In addition to the Configuration Profiles tab, the following tabs are available:

• Settings for Profile ‘profile name’ tab
Select this tab to display the configuration settings for the selected profile. For informa-
tion, see Modify the Profile Settings, page 52.

• Path Settings tab
Select this tab to display the path settings. For information, see Modify the Path Set-
tings, page 57.

Option Description

Copy Makes a replica of the current profile and adds it to the Profiles list.
You can then rename the profile and modify the default settings as
desired. For information, see Create a New Configuration Profile,
page 55.

Remove Removes the selected profile. When you select a profile and click this
button, a confirmation window is displayed.

Tip: You cannot remove the active profile. You can, however, designate
another profile as the active profile and then remove it. To change the
active profile, select another profile and click Set as Active.

Add Adds an unnamed profile to the Profiles list. You can then rename the
profile and modify the default settings as desired. For information,
see Modify the Profile Settings, page 52, and Modify the Path
Settings, page 57.

Rename Renames a profile. When you select a profile and click this button, the
profile is highlighted for you to type the new name.

Set as Active Designates the active (default) profile. When you select a profile and
click this button, the selected profile becomes the active profile.
– 51 –

Construct Spectrum SDK Reference __
3

Modify the Profile Settings
The Settings for Profile ‘profile name’ tab in the Configuration editor allows you to
view and modify a variety of settings for your Spectrum ABO or web projects.

� To modify profile settings:

1 Select the profile you want to change on the Configuration Profiles tab.

2 Select the Settings for Profile tab.
The settings for the specified profile are displayed:

Configuration Editor — Settings for Profile ‘Spectrum 441’ Tab

3 Select the setting you want to change.
The options for that setting are displayed below the settings. For example, if you select
FUSER, the current DBID and FNR values are displayed for you to modify.
– 52 –

__ Features of the Wizards
3

4 Change the settings as desired.
The following settings are available:

Setting Description

Global

Work Offline Indicates whether to connect to the mainframe:
• Select True to work offline
• Select False to allow calls to the server

Source Compare
Command

Indicates the command used to invoke the source comparison
utility.

Source Compare
Application

Indicates the name of the code comparison application used.
This name is displayed on the status bar of the Generation
Status window when the utility is running.

Natural Environment

FUSER
FNAT
FDIC
FCST
FSPE1
FSPE2

Lists the libraries in which Natural modules are stored. To
access modules in another file, specify the DBID (database
identification) and FNR (file number) for the FUSER, FNAT,
Predict, Spectrum secured, and Spectrum unsecured files.

Steplibs Lists the libraries in the steplib chain. Use the direction buttons
to reorder the libraries.

Spectrum

User ID Displays your user ID. To change your user ID, type a new ID.

Dispatcher
Service

Displays the dispatch service currently used to access the
mainframe server. You can:
• Use the drop-down list to change the dispatch service.
• Click Service Manager to open the Spectrum Service

Manager and copy, edit, add, delete, or ping services.

Conversation
Factory Service

Displays the conversation factory currently used to access the
mainframe server. You can:
• Use the drop-down list to change the service.
• Click Service Manager to open the Spectrum Service

Manager and copy, edit, add, delete, or ping services.

Note: For more information, see Spectrum Service Manager, page
113, Construct Spectrum Administration.
– 53 –

Construct Spectrum SDK Reference __
3

5 Click OK to save the modified profile settings and close the Configuration editor.

Wizards

ABO Wizard

LIF Definitions
Module

Displays the default settings for the library image file (LIF)
module.

Default Arbitrary
Class Name

Displays the default name for generated arbitrary subprogram
ABO classes.

Default Browse
Class Name

Displays the default name for the generated browse ABO
classes.

Default Maint.
Class Name

Displays the default name for the generated maintenance ABO
classes.

Code Frame Displays the default code frame settings.

HTML Wizard

Default Browse
File

Displays the default name for the generated browse HTML
templates.

Default Maint
File

Displays the default name for the generated maintenance
HTML templates.

Code Frame Displays the default code frame settings.

Page Handler Wizard

Default Class
Name

Displays the default name for the generated page handler
classes.

Code Frame Displays the default code frame settings.

Object Factory

Code Frame Displays the default code frame settings.

Misc Displays any notes for the selected profile.

Setting Description (continued)
– 54 –

__ Features of the Wizards
3

Create a New Configuration Profile
If you are creating multiple applications with different environmental settings, you may
want to have multiple profiles. One method of creating a new profile is to copy an ex-
isting profile and then modify the settings.

� To copy a profile:

1 Select the profile you want to copy from the Configuration Profiles tab.

2 Click Copy.
A copy of the profile is added to the Configuration editor:

Configuration Editor — Copy a Profile

3 Select the profile copy and enter a new name.
– 55 –

Construct Spectrum SDK Reference __
3

4 Select the Settings for Profile ‘profile name’ tab or the Path Settings tab to specify
configuration settings for the new profile.
For information, see Modify the Profile Settings, page 52, and Modify the Path
Settings, page 57.

5 Click OK to save the profile.
– 56 –

__ Features of the Wizards
3

Modify the Path Settings
The Configuration editor allows you to view and modify the path settings for your Spec-
trum web or ABO projects.

� To modify path settings:

1 Select the profile you want to change on the Configuration Profiles tab.

2 Select the Path Settings tab.
The path settings for the specified profile are displayed:

Configuration Editor — Path Settings Tab

3 Use the browse buttons to change the path settings for the Configuration Files, Code
Frames, Project Templates, or Wizard Catalog locations.

For changes to take effect, restart Visual Basic or the Spectrum Add-In.
– 57 –

Construct Spectrum SDK Reference __
3

Working with Code
The following sections describe how to use implied user exits and the cst:PRESERVE
tag to protect and preserve custom code when regenerating modules.

Implied User Exits
Implied user exits act as placeholders for user exits coded after generating a module,
ensuring the user exits are placed in the source code in exactly the same order as before
generation. However, implied user exits are not added to the generated code unless you
have coded them first. Consequently, you must add an exit line to preserve any hand-
coded changes during regeneration.

Implied user exits are easily recognized because they use a standard structure and nam-
ing convention. Their names are prefixed with the name of the function, subroutine or
property you are coding, and suffixed with a location (start or end). For example, you
can add two user exits to a function called Initialize: Initialize.Start and Initialize.End.
The property procedures also indicate the type of property in the name. For example, a
Property Get exit for CustomerNumber is:

'CustomerNumber.Get.Start'

All subroutines have implied user exits at the beginning and end of the routine. For
example:

Private Sub PerformAction()
 '<cst:EXIT Name='PerformAction.Start' Implied=True>
 Dim sval as String

 sval = LookupAction()

 '<cst:EXIT Name='PerformAction.End' Implied=True>
End Sub

Preserve Customizations to Generated Code
Use the cst:PRESERVE tag to protect your custom code during a regenerate. Place the
tag before and after whole subroutines, entity groups, or between individual variables.
For example, to preserve code in the Class_Initialize subroutine, add the following
code:

'<cst:PRESERVE>
Private Class_Initialize()
 Set m_ABO = CreateObject(PROG_ID)
End Sub
'</cst:PRESERVE>
– 58 –

__ Features of the Wizards
3

Regenerating Modules
This section describes how to regenerate individual and multiple modules. The regen-
eration process is performed in the background (without your input).

Regenerate Individual Modules
There are two ways to regenerate individual modules.

� To regenerate a single module:

1 Do one of the following:

– Right-click the module in the Project Explorer and select Regenerate from the short-
cut menu.

– Select the module in the Project Explorer and select Regenerate <module name>
from the Spectrum menu.

Note: You can regenerate individual modules by clicking Edit <module name> with
<Wizard> from the Spectrum menu. This invokes the wizard used to generate
a module, allowing you to edit the specifications and regenerate the module.

For information about editing modules, see Editing Modules, page 62.
– 59 –

Construct Spectrum SDK Reference __
3

Regenerate Multiple Modules
� To regenerate several modules simultaneously:

1 Open your project in Visual Basic.

2 Select Spectrum > Regenerate Multiple.
The Regenerate Multiple window is displayed:

Regenerate Multiple Window

This window contains both your project modules and any external files you added to
your projects. If you do not have any modules in a project or folder, an icon is displayed.

In this window, you can:

– Click Add Files to move external files into your project for regeneration. For infor-
mation, see Regenerate External Files, page 61.

– Click Remove Files to move files you do not want to regenerate from this window.

– Expand the tree to display the individual project modules you want and any external
files you want to regenerate.

3 Select the modules you want to regenerate and click Regenerate.
A message indicates when the regeneration is complete.
– 60 –

__ Features of the Wizards
3

Regenerate External Files
You can also use the Regenerate Multiple window to add external files you want to
regenerate.

� To add external files:

1 Click Add Files in the Regenerate Multiple window.
The Add External Files window is displayed:

Add External Files Window

2 Select the file(s) you want to regenerate and click Open.
The files are added to the Regenerate Multiple window.
– 61 –

Construct Spectrum SDK Reference __
3

Editing Modules
� To edit a module, either:

1 Select the module you want to modify in the Project Explorer.

2 Select Edit <module name> with <Wizard> from the Spectrum menu.
The wizard used to generate the module opens.

3 Modify the model specifications and regenerate it.

or

1 Right-click the module in the Project Explorer.

2 Select Edit with <Wizard> from the shortcut menu.
The wizard used to generate the module opens.

3 Modify the model specifications and regenerate it.

For more information about the ABO wizard, see Using the ABO Wizard, page 92.

For more information about the HTML Template wizard, see Creating and Custom-
izing an HTML Template, page 91, Construct Spectrum SDK for Web Applications.

For more information about the Object Factory wizard, see Updating and Customiz-
ing the Object Factory, page 137, Construct Spectrum SDK for Web Applications.

For more information about the Page Handler wizard, see Creating and Customizing
a Page Handler, page 75, Construct Spectrum SDK for Web Applications.
– 62 –

__ Features of the Wizards
3

Generating and Reviewing Reports
This section describes how to generate reports as you generate modules, and how you
can review these stored reports as you edit and regenerate modules. It also describes
how to use a code comparison tool to further determine the differences between initial
and regenerated code.

A report is generated every time you use a wizard to generate an ABO or web compo-
nent. These reports are also stored, allowing you to review the generation process while
editing and regenerating modules. If you have a code comparison utility configured to
work with Construct Spectrum, you can invoke it from the Report window to examine
code differences between initial and regenerated modules. For more information, see
Use Reports with a Code Comparison Tool, page 67.

Access Reports
There are two ways to access reports:

• As you generate.
Clicking Generate in the last window of a wizard generates both the module and a report
that details the specific actions that occurred during the generation process. This report
is automatically stored, allowing you to review it as you modify and regenerate modules
before saving them in your Visual Basic project. For information, see Review a Stored
Report, page 64.

• By reviewing stored reports.
It may be useful to review stored reports as you edit and regenerate your application
components using the Generate Report window. You can also invoke your code com-
parison tool from this window to determine the differences between initial and
regenerated code. For information, see Use Reports with a Code Comparison Tool,
page 67.
– 63 –

Construct Spectrum SDK Reference __
3

Review a Stored Report

� To review a stored report:

1 Select Reports from the Spectrum menu.
The Browse Generated Reports window is displayed:

Browse Generated Reports Window

This window provides the generation date and the description of saved reports. This in-
cludes listing the names of projects in the report and the number of components that
were included in the report.
– 64 –

__ Features of the Wizards
3

2 Select the report you want to open and click Open Report.
The Generate Report Window is displayed:

Generate Report Window

This window displays any items that were added, removed, or changed, not only in the
current module, but also in any other modules affected by the generation, such as LIF
definitions. It also displays the location of the component, the time the generate was ini-
tiated, and any messages.

Use the Show messages for drop-down list to select other components. The following
table outlines the components for which you can view messages:

Component Displays

All components Messages for the generation status of all module
components.

System Generic system process messages that are unrelated to a
specific component.

<Specific component> Messages for the generation of a specific component.
– 65 –

Construct Spectrum SDK Reference __
3

Note: All components may not be displayed as they may not be included in all gen-
erated modules.

Specify Report Detail
You can specify the level of detail you want to see in your report and select other report
options and requirements.

� To specify report options:

1 Click Options in the Generate Report window.
The Report Options window is displayed:

Report Options Window

2 Select the options you want.
For example, you can:

– Use the Detail level drop-down list to select the level of detail you want the report
to display. Level 1 provides a very high level summary, whereas Level 4 provides a
highly detailed report.

– Select Relative Time to display exactly when various stages of the generation pro-
cess occurred.

– Select Record source to view the source of each message.

3 Click OK to return to the Generate Report window.
The window contains information in response to all of the options you specified.
– 66 –

__ Features of the Wizards
3

 Use Reports with a Code Comparison Tool
If you have a code comparison tool that is configured to work with Construct Spectrum,
you can click Show Differences in the Generate Report window to view differences be-
tween an original and regenerated file. If you do not have a code comparison tool
installed or it is not properly configured to work with Construct Spectrum, the View
Differences button is disabled.

Use the Configuration editor to configure your code comparison tool with Construct
Spectrum.

� To configure the code comparison tool:

1 Open the Configuration editor.

2 Select the Settings for Profile ‘profile name’ tab.

3 Supply a command in Source Compare Command.
For example:

"C:\Program Files\BeyondCompare\beyond32.exe" "%1" "%2" /noedit

4 Click OK.
To launch the comparison utility, click Show Differences in the Reports Generate
window.
– 67 –

Construct Spectrum SDK Reference __
3

Using The Spectrum Cache
The Spectrum Cache is a dynamic, hierarchical data structure that stores data returned
from the server. The cache allows you to quickly store and access values that are used
frequently but that take a long time to retrieve or derive. This section describes how to
use the Cache Viewer.

Overview
The hierarchical tree structure of the Spectrum cache means it can store complex values
such as Predict file definitions. The cache contains all the data used by the wizards dur-
ing the generate process. It also contains information extracted from FUSER modules
and information about the generation environment. Use the Cache Viewer to display
data in the cache, mark nodes to be refreshed, or remove nodes to clean up the cache.

� To invoke the Cache Viewer:

1 Do one of the following:

– Select View Cache from the Spectrum menu.

– Click the Cache Viewer icon on any wizard.
– 68 –

__ Features of the Wizards
3

The Cache Viewer window is displayed:

Cache Viewer Window

The Cache Viewer displays a hierarchical structure of the system files, libraries, nodes,
and Predict views in your application. The lowest nodes are followed by the date they
were last refreshed.
– 69 –

Construct Spectrum SDK Reference __
3

Mark Nodes to be Refreshed
Use the Cache Viewer to select the nodes you want refreshed.

� To mark nodes to be refreshed:

1 Invoke the Cache Viewer.

2 Expand the tree to view individual nodes.

3 Select the node(s) you want to have refreshed.

4 Click OK.

When you mark a node, you also mark all of its children. When the wizards fetch data
from the cache, they recognize the nodes you specified to be refreshed and make the
appropriate call to the server. If the server call fails, existing data in the cache is used.

Remove Nodes From the Spectrum Cache
You can remove nodes that are no longer needed to clean up the cache.

� To remove nodes:

1 Invoke the Cache Viewer.

2 Expand the node tree and select the node(s) you want to delete.

3 Click Delete.
The nodes are removed from the cache.
– 70 –

__
4

USING THE BUSINESS-OBJECT-SUPER-
MODEL

This chapter describes how to use the Business-Object-Super-Model to generate multi-
ple Natural components of a Construct Spectrum web or client/server application —
without using the Construct Spectrum client framework components.

The following topics are covered:

• Overview, page 72

• Before You Begin, page 73

• Generating Packages, page 76

• Troubleshooting, page 83
– 71 –

Construct Spectrum SDK Reference __
4

Overview
The Business-Object-Super-Model uses a single, high-level model specification to gen-
erate all the required Natural components (modules) of a web or other distributable
application. This model generates sets of modules, called “packages”, for all the busi-
ness objects in an application, such as the object maintenance and browse subprograms,
proxies, and parameter data areas (PDA) for a Customer business object.

Typically, you will use the Business-Object-Super-Model to generate the first iteration
of your application. To generate these components, the super model executes the indi-
vidual model for each module. As you refine the application, you will likely regenerate
certain modules separately using the individual models. The following table lists each
module in a typical package and the model used to generate it:

You can also generate modules that allow users to browse business objects within a
package or linked through a foreign field relationship.

Tip: Although the super model does not support user exits, you can specify a user exit
by regenerating the Natural module using its individual model.

Module Model Name Description

Object maintenance
subprogram,
Object PDA,
Restricted PDA

Object-Maint-Subp Subprogram used to maintain a
business object. This model also
generates the parameter data area and
restricted PDA for the object.

Object maintenance
subprogram proxy

Subprogram-Proxy Proxy used to communicate
information between the Spectrum
dispatch service and an object
maintenance subprogram.

Object browse
subprogram,
Key PDA,
Row PDA,
Restricted PDA

Object-Browse-Subp Subprogram used to encapsulate access
to data on the server and return records
in rows and columns, and the PDAs
that communicate information to and
from the subprogram.

Object browse
subprogram proxy

Subprogram-Proxy Proxy used to communicate
information between the Spectrum
dispatch service and an object browse
subprogram.
– 72 –

__ Using the Business-Object-Super-Model
4

Before You Begin
Before generating application packages for a Construct Spectrum application, there are
several prerequisite tasks you must perform. Before completing any of these tasks, en-
sure that all required software has been installed and configured on both the server and
the client.

Before you begin:

1 Check the Model Defaults, page 73

2 Set up Default Values in Predict, page 73

3 Establish a Naming Convention, page 74

4 Set Up the Application Environment, page 75

These tasks are described in the following sections.

Check the Model Defaults
When the super model invokes individual models, it uses the default values specified
for each model. Review and change (if necessary) the current defaults for these models.
To review the values, invoke each model used by the Business-Object-Super-Model
and note the default values.

Set up Default Values in Predict
The Business-Object-Super-Model generates specifications for all of the models used
to generate an application from a small set of input parameters. To accomplish this, it
relies heavily on parameter defaulting. You can add keywords to your file and field def-
initions in Predict to default various parameters. Customize parameter defaults by
linking Predict keywords and verification rules to your fields, files, and relationships.

For more information about Predict defaults and definitions, see Setting Up Predict
Definitions, page 39.

Model Defaults

Object-Browse-Subp Uses the first four characters of the module name to suffix
the object, key, and restricted PDAs.

Object-Maint-Subp Uses the first four characters of the module name to suffix
the object and restricted PDAs.
– 73 –

Construct Spectrum SDK Reference __
4

Establish a Naming Convention
Because the Business-Object-Super-Model generates multiple modules, it is important
to establish a naming convention. Locating the modules is easier when your naming
convention clearly identifies them.

When using the Business-Object-Super-Model, you must supply a four-character prefix
to be used for all modules within a package. (If you specify a prefix that is less than four
characters, it is padded with dashes.) The super model defaults the suffix, which iden-
tifies the module type, as follows:

The following example illustrates the naming conventions for a generated module:

Naming Conventions for a Generated Module

Suffix Module

MSO
MSA
MSR

Object maintenance subprogram
object PDA
restricted PDA

MSP Proxy for the object maintenance subprogram

BSO
BROW
BKEY
BPRI

Object browse subprogram
row PDA
key PDA
restricted PDA

BSP Proxy for the object browse subprogram

CUSTMSP

Four-character prefix
assigned by you

Three-character suffix
assigned by system

“M” for Maintenance

“S” for Server

“P” for Program

“CUST” for Customer
– 74 –

__ Using the Business-Object-Super-Model
4

Set Up the Application Environment
Before creating a Construct Spectrum application, you must set up and configure the
mainframe environment for your application as follows:

1 Define the steplib chain.

2 Define the domain.

3 Define security for the domain.

For more information, see Setting up the Mainframe Environment, page 37.
– 75 –

Construct Spectrum SDK Reference __
4

Generating Packages
You can use the Business-Object-Super-Model in either the Construct Windows inter-
face or the Construct Generation subsystem. The parameter information you are asked
to specify is the same in both interfaces and there are the same number of input speci-
fication steps. In the Generation subsystem, there are three specification panels:
Standard Parameters, Package Parameters, and Specific Package Parameters. Similarly,
in the Construct Windows interface, there are three steps in which you can specify stan-
dard parameters, packages parameters, and new package parameters.

The following sections describe how to use the Business-Object-Super-Model to create
application packages. Examples are from the Construct Windows interface.

� To generate application packages using the Business-Object-Super-Model:

� Step 1: Define the Standard Parameters, page 77

� Step 2: Define the General Package Parameters, page 78

� Step 3: Define the Specific Package Parameters, page 79

� Step 4: Create Another Package (Optional), page 81

� Step 5: Generate the Modules, page 81

Note: For information about invoking the super model, see Using the Generation
Subsystem, page 59, Natural Construct Generation, and Generating with
the Super Model, page 86, Construct Spectrum SDK for Client/Server Appli-
cations.
– 76 –

__ Using the Business-Object-Super-Model
4

Step 1: Define the Standard Parameters
The following example shows the standard parameters for the Business-Object-Super-
Model:

Business-Object-Super-Model Wizard — Standard Parameters

� To define standard parameters for the package:

1 Type a name for the super model specifications in Module.
This name identifies the package you are about to create. The name should be
descriptive so that you can easily identify the package later.

2 Type the name or identification number of the library where you want to generate the
modules in System.
By default the name of the current library is displayed.

3 Type a brief title for the package in Title.

4 Type a brief description of the package in Description.

5 Click Next.
The general package parameters are displayed.
– 77 –

Construct Spectrum SDK Reference __
4

Step 2: Define the General Package Parameters
Next, specify the name of the package for which you want to generate modules, as well
as some basic package criteria that affect the entire application:

Business-Object-Super-Model Wizard — General Package Parameters

� To define general package parameters:

1 Provide the domain name for this application in Domain.
To display a list of domains for selection, click the Browse button.

2 Do one of the following:

– Mark Regenerate them, preserving all custom code (the default) to regenerate exist-
ing modules and save all custom code. Any modified parameters in the specification
are not used. However, the super model will keep user exits and apply updates from
Predict (such as a new field or BDT keyword) and from the model code frames.

– Mark Delete it and generate a new copy to replace all existing modules.

3 Click Next.
The specific package parameters are displayed.
– 78 –

__ Using the Business-Object-Super-Model
4

Step 3: Define the Specific Package Parameters
All packages in your application are displayed on the navigation bar. To navigate be-
tween packages, click Next, Back, or select a package from the navigation bar:

Business-Object-Super-Model Wizard — Specific Package Parameters

� To define package parameters:

1 Specify a prefix for the package in Package prefix.
For more information, see Establish a Naming Convention, page 74.

2 Specify the view used by the browse and maintenance subprograms in Predict view.
This view determines which business object will be used. Click Defaults to retrieve the
defaults for the object.

3 Specify the primary key for the specified view in Primary key.
The key can be a descriptor, superdescriptor, or subdescriptor. If the key does not exist
in the corresponding Predict file, an error message is displayed upon validation. This
value cannot be the same as that in the Hold field.

4 Specify the name of the field used to logically protect the record against intervening
Update or Delete actions in Hold.
– 79 –

Construct Spectrum SDK Reference __
4

5 Type a brief description of your package file in Description.

Tip: Based on how the file is defined in Predict, the super model attempts to provide
default field values. You can override the defaults using Predict keywords. Rather
than typing the values directly, set up your Predict file definition to default the
required values. For information, see Setting Up Predict Definitions, page 39.

6 Select the package modules you want to generate from Package modules.
To select all the modules, right-click and select Select All Modules from the shortcut
menu. The following information is displayed in Package modules:

– Module lists all modules that can be generated by the super model. Each module is
identified by the package prefix, followed by the standard suffix for the module type.
For more information, see Establish a Naming Convention, page 74.

– Gen indicates which modules will be generated.

– Model indicates the names of the individual models that the super model invokes to
generate the package modules.

– G/R/O indicates one of the following:

– Library indicates one of the following for each module:

G Module does not currently exist in source form and will be generated and
saved in the current library.

R Module currently exists in source form and will be regenerated and saved in
the current library. This status occurs when you select Regenerate it,
preserving custom code in Step 2.

O Module currently exists in source form and will be overwritten and saved in
the current library. This status occurs when you select Delete it, and generate
a new copy in Step 2.

? Click Check to determine if there is existing source or object code.

Blank indicates that a check was made, but there is no existing code.

S Indicates that source code exists. If the S is black, the source code is in the
current library. If the S is red, the source code is in another library. To view the
location of the source code, place the mouse pointer over the S.

C Indicates that compiled (object) code exists. If the C is black, the source code
is in the current library. If the C is red, the source code is in another library. To
view the location of the source code, place the mouse pointer over the C.
– 80 –

__ Using the Business-Object-Super-Model
4

Step 4: Create Another Package (Optional)
You can define the parameters for up to 12 packages.

� To create another package:

1 Click Next or Add.

2 Complete each additional package as described in previous steps.

Step 5: Generate the Modules
� To generate the modules:

1 Click Finish.
The Code window is displayed.

2 Select File > Generate or click the Generate icon on the toolbar.
The Generate window is displayed, showing the generation process:

Generate Window
– 81 –

Construct Spectrum SDK Reference __
4

The module status pane displays the names of the modules as they are generated and
stowed by the Business-Object-Super-Model. The messages pane provides a status re-
port of the generation process, including any error messages that may occur. When all
modules have been generated and stowed, a confirmation message is displayed.

Note: Click Cancel to terminate the generation process at any time.

Generation Subsystem
In the Generation subsystem, you can either generate in batch or generate from the main
menu. (Generation is automatically done in batch in the Construct Windows interface.)

Tip: If you are generating multiple modules, generate in batch to avoid tying up sys-
tem resources.

� To generate the modules from the Generation main menu:

Note: If the super model specification is not currently in the Natural Construct edit
buffer, read it into Natural Construct and proceed.

1 Enter “G” in the Function field.
The Business-Object-Super-Model specification is saved and the specifications for the
individual modules are created and saved.

� To generate modules in batch:

1 Save the super model specification on the Natural Construct Generation main menu.

2 Invoke the NCSTBGEN utility.
For information about this utility, see Multiple Generation Utility, page 753, Natural
Construct Generation.

3 Specify the name under which you saved your super model specification and the model
name: Business-Object-Super-Model.

4 Generate the modules.
– 82 –

__ Using the Business-Object-Super-Model
4

Troubleshooting
After using the Business-Object-Super-Model to generate the modules in a package, re-
view the generation status report to reconcile any errors that may have occurred. The
following table lists possible errors and solutions:

Error Solution

A module was generated, but not
stowed because of a missing DDM.

Correct the error and regenerate the module
using its model specification.

A generation error occurred because
of a missing dependent module.

Correct the error and regenerate the module
using its model specification.

Generation errors affected several
modules.

Correct the errors and regenerate the
modules as follows:

1 Re-read the super model specification
into Construct Spectrum.

2 Mark the modules that require
regeneration.

3 Repeat the generation steps until all
modules have been successfully
generated and stowed.

Compilation errors in the super model-
generated code caused cycling.

Ensure that the SYNERR parameter is set
to ON in your user profile NATPARM.
– 83 –

Construct Spectrum SDK Reference __
4

– 84 –

__
5

USING ACTIVEX BUSINESS OBJECTS

This chapter describes ActiveX business objects (ABOs). It contains step-by-step in-
structions to use the ABO Project wizard and ABO wizard. It also describes how to
customize your generated ABOs.

The following topics are covered:

• Overview, page 86

• Using the ABO Project Wizard, page 87

• Using the ABO Wizard, page 92

• Customizing the ABO, page 98
– 85 –

Construct Spectrum SDK Reference __
5

Overview
An ABO is a Visual Basic class. This class wraps the Spectrum calls required to com-
municate with a Natural subprogram exposed by a subprogram proxy. It exposes a set
of interfaces that provide a consistent and familiar interface to Natural components and
make the subprogram easy to use. You must generate an ABO for each of the Natural
subprograms used in your application.

An ABO project contains the ABOs used by your application, as well as the framework
components supplied by Construct Spectrum. Use the ABO Project wizard to generate
your ABO project and then use the ActiveX Business Object wizard to generate the
ABOs.
– 86 –

___ Using ActiveX Business Objects
5

Using the ABO Project Wizard
This section describes how to use the ABO Project wizard to create an ABO project, as
well as the framework components Construct Spectrum adds to the project.

Create the ABO Project
� To create the ABO project:

1 Start Visual Basic.
The New Project window is displayed:

New Project Window

2 Select Spectrum ABO Project.

3 Click Open.
The ABO Project wizard is displayed.
– 87 –

Construct Spectrum SDK Reference __
5

4 Click Next.
The Choose Project Directory window is displayed:

ABO Project Wizard — Choose Project Directory

5 Enter your project name and the location to store your project.
Store the project in the same directory in which your web applications are stored.

6 Click Next.
If you keep the default directory or specify a directory that does not exist, the following
window is displayed:

Create New Directory
– 88 –

___ Using ActiveX Business Objects
5

7 Click Yes to create the new directory.
The Ready to Create New ABO Project window is displayed:

ABO Project Wizard — Ready To Create New ABO Project

8 Select the wizard.

9 Select Invoke Wizard.
This option launches the ABO wizard after the project is created.
– 89 –

Construct Spectrum SDK Reference __
5

10 Click Finish.
The generated ABO project is displayed in Project Explorer:

ABO Project in Project Explorer
– 90 –

___ Using ActiveX Business Objects
5

Framework Components for the ABO Project
The following table describes the Construct Spectrum framework components that are
included in the generated ABO project:

Component Description

Errors.bas Provides error-raising capabilities for the ActiveX component.

Globals.bas Contains definitions, variables, and helproutines used by the
generated ABOs.

LIFDefinitions.bas Is empty in a new ABO project. It becomes populated with
Natural data area definitions when ABOs are added to the project
using the ABO wizard.

Utility.bas Contains procedures that can be used in any type of Visual Basic
application. For example, Subst performs substitutions into a
string and is useful for developing international applications:

'This is the message that contains substitution
placeholders.
'This message might come from a resource file in the
case of a localized app.
smsg = "Value must be in the range %1 to %2."
MsgBox Subst(smsg, 100, 10000), vbExclamation
– 91 –

Construct Spectrum SDK Reference __
5

Using the ABO Wizard
After creating the ABO project, use the ABO (ActiveX Business Object) wizard to gen-
erate an ABO for each Natural subprogram used in your application. This wizard is
installed as a Visual Basic Add-In. In addition to generating a new ABO, you can use
the ActiveX Business Object wizard to regenerate an existing ABO or display an exist-
ing ABO to examine its specifications.

� To generate an ABO and add it to the project:

1 Select Wizards > ActiveX Business Object from the Spectrum menu.
The ActiveX Business Object Wizard is displayed:

ActiveX Business Object Wizard
– 92 –

___ Using ActiveX Business Objects
5

2 Click Next.
The Select Subprogram Proxy window is displayed:

ActiveX Business Object Wizard — Select Subprogram Proxy

Note: For information about using the Spectrum Cache viewer or Configuration ed-
itor, see Features of the Wizards, page 49.

3 Enter the name of the subprogram proxy for the ABO.
You can also specify the name of a steplib.

4 Click Next.
The wizard performs the following processing:

– Reads the **SAG lines of the subprogram to extract the model name

– Reads the logical key names (for an object browse subprogram)

– Reads the **SAG lines of the subprogram proxy to extract the domain, object, ver-
sion, subprogram name, and 1:V overrides

– Accesses the Spectrum files to retrieve the method names linked to this subprogram
proxy
– 93 –

Construct Spectrum SDK Reference __
5

The Confirm Details window is displayed:

ActiveX Business Object Wizard — Confirm Details

This window shows the library, model name, title, domain, object, and methods for the
subprogram proxy, as well as information about the proxy’s subprogram.

5 Confirm that everything is correct.
To select a different proxy, click Back.
– 94 –

___ Using ActiveX Business Objects
5

6 Click Next.
The Customize the ABO’s Interface window is displayed:

ActiveX Business Object Wizard — Customize the ABO’s Interface

7 Verify the default name supplied for the ABO and change it if desired.

8 Verify that the ABO will be generated into the correct project.
To change the project, click Change and select a different project.

9 Click Customize Properties to customize the ABO’s properties.
For more information, see Customizing the ABO, page 98.

10 Verify the status of the ICSTPersist option.
This option allows the ABO to save its instance data at runtime and restore it later.
– 95 –

Construct Spectrum SDK Reference __
5

11 Check the status of the ICSTPropertyInfo option.
This option provides extended information about the properties exposed by the ABO.
This information can be accessed at runtime. It includes:

– property name

– VB data type

– number of decimal places for numeric property

– length of the data

– logical format

– read-only or not read-only

– number of dimensions in an array

– number of occurrences in each dimension

12 Click Next.
The Ready to Generate window is displayed:

ActiveX Business Object Wizard — Ready to Generate
– 96 –

___ Using ActiveX Business Objects
5

13 Do one of the following:

– Click Generate to view the generation report.
If you have a code comparison utility installed and configured for use with Construct
Spectrum, you can also compare the newly generated code with code from an earlier
generation of the module. For information about using a code comparison utility, see
Use Reports with a Code Comparison Tool, page 67. For information about the
generation report, see Generating and Reviewing Reports, page 63.

– Click Finish to complete the generation.
When generation is complete, a message window informs you of the success or fail-
ure of the operation. If there were problems with the generation, the window
prompts you to view the generation report.

14 Generate an ABO for each Natural subprogram used in your application.
– 97 –

Construct Spectrum SDK Reference __
5

Customizing the ABO
You can customize the ABO’s properties in the Customize Properties window or in the
supplied user exits. These options are described in the following sections.

Customize Properties Generated for the ABO
You can customize or view the ABO interface before generating the ABO.

� To customize or view the ABO interface:

1 Click Customize Properties in the Customize ABOs Properties window.
The Customize Properties window is displayed:

Customize Properties Window

By default, the wizard generates properties for the fields in the object PDA for an object
maintenance subprogram and in the key and row PDA for an object browse subpro-
gram. For all other subprograms, the wizard generates properties for the entire PDA.

If the subprogram is an object maintenance subprogram, the wizard displays the method
names and their generated derivations, of which the method names can be customized.
If the subprogram is a browse subprogram, the wizard displays the logical key names.
– 98 –

___ Using ActiveX Business Objects
5

You can customize the derived property names, data types, and get/let (read/write) sta-
tus. Using the check boxes in the Generate column, specify which properties should be
generated. Any fields that have been changed from the default are highlighted.

The options in the Customize Properties window are:

Opt Column

� To view additional properties for MUs and PEs:

1 Click the Opt cell for the field.
The Browse button is displayed.

2 Click Browse.
The Options window is displayed:

Options Window

Column Description

Field Name of the field in the Natural data area.

Gen Indicates whether default properties are generated. Deselect the
properties you do not want to generate.

Property Name Name of the property generated for the Natural field.

Data Type Native Visual Basic data type the property is declared as.

Get/Let Get returns the value of a property; Let sets a property value.

Opt Indicates whether added methods or properties are generated for
the array. This option is applicable to MUs and PEs only. For more
information, see the following section.
– 99 –

Construct Spectrum SDK Reference __
5

Extra properties are generated for the ABO class by default. You have the option of
manually renaming each method or property name. The Multi-line text block property
is only available for alphanumeric MUs. This allows users to edit all the elements of an
array at one time, in one continuous text string. For more information, see Customizing
HTML Before Generation, page 103, Construct Spectrum SDK for Web Applications.

Customize the ABO within User Exits
You can also customize the ABO within user exits. The following user exits are sup-
plied in the generated ABO.

GetAppService_.SetMethodAndBlocks
Use this exit to override the default method names and block numbers in the
GetAppService_ procedure.

ICSTBrowseObject_LogicalKeyInfo.Extra
This exit resides in the Property Get LogicalKeyInfo procedure in the ICSTBrowseOb-
ject interface. The procedure provides information at runtime about the logical keys
supported by the ABO. Use this exit to define additional logical keys that you have add-
ed to the ABO manually.

Note: This exit is only available in browse ABOs.

ICSTPersist_InstanceData.Get.Extra
Use this exit to persist additional module-level variables.

Note: This exit is only available if you generate the ABO with the ICSTPersist in-
terface.

ICSTPersist_InstanceData.Let.Extra
Use this exit to restore the additional module-level variables that were persisted in the
ICSTPersist_InstanceData.Get.Extra user exit.

Note: This exit is only available if you generate the ABO with the ICSTPersist in-
terface.
– 100 –

___ Using ActiveX Business Objects
5

ICSTPropertyInfo_PropertyInfo.Get.Extra
This exit resides in the Property Get PropertyInfo procedure in the ICSTPropertyInfo
interface. This procedure provides information at runtime about the properties in the
ABO’s class. Use this exit to define additional properties that you added to the ABO
class manually.

Note: This exit is only available if you generate the ABO with the ICSTPropertyInfo
interface.

<CounterPropertyName>.Get.NullList
This is a dynamically generated user exit. Every array counter property procedure that
is generated will have this user exit.

Array counter property procedures contain code that determines the number of array oc-
currences that are used. This code examines each occurrence of the array and checks
whether certain fields are empty. If one of these fields is not empty, the code considers
the array occurrence to be used.

Use this exit to specify the fields that should be checked and the values that the fields
should have to be considered empty. The wizard always generates sample code into this
exit consisting of the field names and the empty values. You can change the sample
code after generating.

Tip: Because coded user exits are always preserved when regenerating, delete the ex-
isting exit if you want the wizard to regenerate the sample.
– 101 –

Construct Spectrum SDK Reference __
5

– 102 –

__
6

USING THE SUBPROGRAM-PROXY MODEL

This chapter describes the subprogram proxy, how to generate proxies using the Sub-
program-Proxy model, and how to customize the proxy. It also contains information
about adding a method to an application service definition, overriding block handling,
versioning, and debugging.

The following topics are covered:

• Overview, page 104

• Generating a Subprogram Proxy, page 105

• Generating Methods, page 111

• Overriding Block Handling, page 116

• Versioning Support, page 120

• Debugging Support, page 120
– 103 –

Construct Spectrum SDK Reference __
6

Overview
Typically, you will use the Subprogram-Proxy model when tailoring an existing appli-
cation. The major functions of this model are to generate:

• A subprogram proxy that interacts with the Spectrum dispatch service and the target
Natural subprogram.

• The application service definition entry needed in the Construct Spectrum Administra-
tion subsystem.

The subprogram proxy acts as a bridge between the Spectrum dispatch service and a
specific subprogram. When a request is initiated from a dialog or web page to the server
(for example, when a user updates a customer record), information is sent from the cli-
ent to the subprogram proxy on the server. The subprogram proxy then calls the
appropriate object subprogram to fulfill the request.

The subprogram proxy is also responsible for converting data between the network
transfer format and the native Natural data format used in the subprogram’s PDA. It
also provides optimized data block handling and creates application service definitions.

You must generate a subprogram proxy for each subprogram included in your applica-
tion. You can create subprogram proxies using the VB-Client-Server-Super-Model, the
Subprogram-Proxy model, or the Business-Object-Super-Model.

If you are creating a new application or have performed extensive changes to your ap-
plication file relationships, use the super models to generate your application. The
Business-Object super model generates object maintenance and browse subprograms,
their PDAs, and subprogram proxies. For more information, see Using the Business-
Object-Super-Model, page 71.

The VB-Client-Server-Super-Model generates the same Natural modules as the Busi-
ness-Object super model, as well as the Visual Basic modules needed by client/server
applications.

Accessing System Files
To generate a subprogram proxy, the Subprogram-Proxy model requires access to the
unsecured data in the Construct Spectrum Administration subsystem files. It uses this
data to provide an active help listing for the Domain field in Standard Parameters. Ad-
ditionally, this model creates or updates the application service definition for the
specified object subprogram.

The subsystem file containing the unsecured data must be available either through an
LFILE designation in your Natural startup or through the Natural nucleus used in the
session in which you are generating (NT-FILE parameter must be specified).
– 104 –

__ Using the Subprogram-Proxy Model
6

Generating a Subprogram Proxy
This section describes how to generate a subprogram proxy and considerations to be
aware of when generating the proxy.

� To generate a subprogram proxy:

� Step 1: Specify Standard Parameters, page 106.

� Step 2: Specify the Number of Occurrences Returned, page 108.

� Step 3: Add User Exits, page 109.

� Step 4: Generate the Subprogram Proxy, page 110.

Before using the Subprogram-Proxy model, consider the following:

• Maintain one application service definition for each business object
An application service definition specifies the methods and the subprogram from which
each method is executed for a business object. The application service definition is cre-
ated or updated when you generate a subprogram proxy.

To maintain one application service definition for each business object, ensure that the
domain name, object name, and version number are the same when you generate each
subprogram proxy for the business object. For example, if you have a Customer busi-
ness object that has both a maintenance and a browse function, generate one
subprogram proxy for the maintenance function and one for the browse function. To en-
sure that only one application service definition is created for both the maintenance and
browse functions, specify the same domain, object, and version when you specify the
model parameters for each subprogram proxy.

For more information, see Generating Methods, page 111.

• Define 1:V Variables
When generating a subprogram proxy, pay special attention to subprograms that have
1:V variables (such as object browse subprograms). Subprograms use the Natural 1:V
notation to define the row parameter that allows an arbitrary number of records to be
returned to the client. To minimize the number of calls to the server, you normally want
as many records as possible returned for each server request. However, the more
records requested, the longer it takes to satisfy each request. Also ensure you do not
specify more occurrences than will fit within the maximum 32K communication area
available for each request.
– 105 –

Construct Spectrum SDK Reference __
6

Step 1: Specify Standard Parameters
� To specify standard parameters for the subprogram proxy:

1 Invoke the Subprogram-Proxy wizard.

2 Select Standard Parameters:

Subprogram-Proxy Wizard — Standard Parameters

This window is similar for all model wizards. For information about the parameters and
options, see the online help.

Note: The parameters and options available in the Construct Windows interface and
the Generation subsystem are identical. For information, see Using the Sub-
program-Proxy Model, page 103, Natural Construct Generation.
– 106 –

__ Using the Subprogram-Proxy Model
6

Tip: Follow the Construct Spectrum naming conventions and use “MSP” for the last
three characters of a maintenance subprogram proxy or “BSP” for the last three
characters of a browse subprogram proxy. This will make it easier to identify the
subprogram proxy when listing modules.

3 Specify the following parameters for the subprogram proxy:

Parameter Description

Subprogram Name of the subprogram for which the proxy is being
generated. For example, to generate a subprogram proxy for
the ORDMSO Customer Order subprogram, enter
“ORDMSO”.

Domain Name of the domain. To set up security for your applications,
link selected groups of users to each domain.

Object name Name of the business object. For example, a customer
information business object can be called “Customer”. For
more information, see Versioning Support, page 120.

Version Version level of your package. This number consists of three
parts: version, release, and SM level.

Note: One application service definition is created for both a
maintenance and a browse dialog if the domain, object, and
version values are identical on this panel for their respective
subprogram proxies.

Generate
trace code

Use this option if you are developing an early iteration of your
application or if runtime errors are occurring in the application.
This option adds code to the proxy that can help you determine
the cause of a parameter format error.

If your application is stable, do not generate trace code. This
improves the performance of your subprogram proxy and
reduces the amount of generated code.

Compress network
data

Use this option if the proxy transmits large volumes of data to
the client. If you are generating a browse subprogram proxy
and a large volume of data is being sent to the client, select data
compression.

Encrypt network
data

Use this option if the proxy transmits sensitive data to the
client.
– 107 –

Construct Spectrum SDK Reference __
6

Note: The Compression and Encryption parameters apply only to data sent to the cli-
ent. If you are creating a client/server application, you can enable compression
and encryption for data sent from the client to the server. Mark the Compress
network data and Encrypt network data check boxes in the Standard Parame-
ters window of the VB-Maint-Object model or VB-Browse-Object model (de-
pending on the type of dialog you are creating).

Step 2: Specify the Number of Occurrences Returned
Next, specify the maximum number of 1:V arrays that can be returned to the client for
each request. A 1:V array can consist of either one-dimensional data, such as a list of
repeating values, or two-dimensional data, such as a row of record data.

For maximum efficiency, specify 20 occurrences for each subprogram structure (PDA).

� To specify the maximum number of occurrences to return for each request:

1 Click Edit 1:V Overrides in the Standard Parameters window.
If no fields in the target subprogram use the 1:V notation, a message is presented
indicating this. Otherwise, the model determines these values and displays a window
listing their names. For example:

Edit 1:V Overrides Window
– 108 –

__ Using the Subprogram-Proxy Model
6

Note: If you are using the Subprogram-Proxy model in the Generation subsystem to
generate your subprogram proxy, press PF5 (1:V) on the Standard Parameters
panel to access the 1:V Overrides panel.

2 Specify the maximum number of occurrences that can be returned to the client with
each call to the server.
Click Refresh to update the information by making another call to the server.

3 Click OK to return to the Standard Parameters window.

Step 3: Add User Exits
After supplying model parameters, you can customize the generation results by creating
user exit code for the module. For example, you can use user exits to modify block han-
dling or add block handling for new methods.

� To add user exits:

1 Click Finish in the Standard Parameters window.
The user exits available for the Subprogram-Proxy model are displayed:

User Exits for the Subprogram-Proxy Model
– 109 –

Construct Spectrum SDK Reference __
6

The icon on the left indicates whether sample code is generated for the user exit.

2 Right-click the user exit and select Generate Sample from the shortcut menu.

3 Modify the code as required.

You can also generate sample code from the user exit list by selecting User Exit List
from the View menu or clicking the View button.

� To generate sample code:

1 Select the user exit.

2 Click Generate sample.

Note: You can also add new user exits and write code for them. For information, see
Invoke User Exit Editor Function, page 69, Natural Construct Generation.

Step 4: Generate the Subprogram Proxy
� To generate the subprogram proxy:

1 Select Generate from the File menu or click the Generate button on the toolbar.
The Generate window is displayed, showing module and status information.

2 When generation completes successfully, select Stow <Module name> from the File
menu.

Once generation has completed, the following two items exist:

• The generated subprogram proxy.

• The application service definition in the Construct Spectrum Administration
subsystem.
– 110 –

__ Using the Subprogram-Proxy Model
6

Generating Methods
The subprogram proxy generates a method for each of the actions supported by an ob-
ject subprogram. The application service definition includes the following methods:

If a subprogram proxy is generated using the same domain, business object, and version
as another subprogram proxy, the new methods are also added to the application service
definition. This allows a single application service definition to access both the mainte-
nance and browse functions of a business object.

Object Method

Maintenance Delete
Exists
Get
Initialize
Next
Store
Update

Browse Browse

Any other type Default
– 111 –

Construct Spectrum SDK Reference __
6

Access the Application Service Definitions
� To view application service definition records:

1 Invoke the Construct Spectrum Administration main menu.

2 Enter “AA” in the Function field.
The Application Administration main menu is displayed.

3 Enter “MM” in the Function field.
The Application Administration Maintenance menu is displayed.

4 Enter “AS” in the Function field.
The Maintain Application Service Definitions panel is displayed:

Maintain Application Service Definitions Panel

Use this panel to add a method.

BSIF__MP Construct Spectrum Administration Subsystem BSIF__11
Jan 30 Maintain Application Service Definitions 3:15 PM

 Action (A,B,C,D,M,N,P) _

 Domain..................: DEMO____ *
 Object..................: PRODUCT_________________________
 Version.................: 01 / 01 / 01
 Description.............: PRODUCT______________________________________
 Default subprogram proxy: PRODMSP_
 Steplibs................: ________________________________ *

 Subprogram
 01 Method Name Proxy Steplibs *
 -------------------------------- -------- --------------------------------
 1 BROWSE__________________________ PRODBSP_ ________________________________
 2 DELETE__________________________ ________ ________________________________
 3 EXISTS__________________________ ________ ________________________________
 4 GET_____________________________ ________ ________________________________
 5 INITIALIZE______________________ ________ ________________________________
Command: __
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
confm help retrn quit flip pref bkwrd frwrd main
Appl Srvc Definition DEMO-PRODUC displayed successfully
– 112 –

__ Using the Subprogram-Proxy Model
6

Add a Method
You can add custom methods to a maintenance or browse object. For example, if your
maintenance object requires special processing that is not provided by one of the sup-
plied methods, you can add a new method to implement the processing.

� To add a new method:

1 Step 1: Create the Method, page 113.

2 Step 2: Update the Application Service Definition, page 113.

3 Step 3: Update the Library Image File, page 114.

Optionally, you can transmit only the data required for the custom method when the
method is invoked. For more information about optimizing the handling of data for cus-
tom method, see Overriding Block Handling, page 116.

Step 1: Create the Method

� To create the method:

1 Define the method in the USER-DEFINED-FUNCTIONS user exit for the subprogram
and save your changes.

2 If the subprogram does not currently include this user exit, regenerate it using the
Object-Maint-Subp model and select the USER-DEFINED-FUNCTIONS user exit.

For information about using the Object-Maint-Subp model and user exits, see Object-
Maint Models, page 345, Natural Construct Generation.

Step 2: Update the Application Service Definition

� To update the application service definition:

1 Type “M” in Action.

2 Type the domain, object, and version of the application service definition you are
updating in the appropriate fields.

3 Type the name of the method in Method Name.
Use the name that was specified when the method was created and added to the
maintenance subprogram user exit.

4 If the subprogram proxy for this business object’s method is different from the default
subprogram proxy specified for the business object, type the new subprogram proxy
name in Subprogram Proxy; otherwise, leave the field blank.

5 If the steplib for this business object’s method is different from the default steplib
specified for the domain, provide the new steplib name in Steplibs.

6 Press Enter.
The method is added to the application service definition.
– 113 –

Construct Spectrum SDK Reference __
6

Step 3: Update the Library Image File
The library image file (LIF) resides on your client and must be updated with the valid
methods for a business object. To update the LIF, download the subprogram proxy to
the Visual Basic project for the application and Construct Spectrum automatically adds
the new method.

� To update the library image file with the method:

1 Open the project for your application in Visual Basic.

2 Select Download Generated Modules from the Construct Spectrum Add-In menu.
For more information, see Downloading the Generated Modules, page 107,
Construct Spectrum SDK for Client/Server Applications.

3 Download the subprogram proxy definition to your project.
A maintenance subprogram proxy has the suffix “MSP” and a browse subprogram
proxy has the suffix “BSP”.

4 Save your changes and run the project.
The new method is available for use in your application.

For web applications, you must regenerate the ABO, page handler and HTML template.
For more information, see Creating and Customizing a Page Handler, page 75, and
Creating and Customizing an HTML Template, page 91, Construct Spectrum SDK
for Web Applications.
– 114 –

__ Using the Subprogram-Proxy Model
6

Override the Steplib Chain for the Domain
All business objects in an application service definition share the same domain. All
business objects within a domain are accessed using the domain’s steplib chain. You
can, however, override the steplib chain for each business object or method defined in
your application service definition.

� To override the steplib chain for the domain:

1 Access the Maintain Application Service Definitions panel:

Maintain Application Service Definitions Panel

For more information about this panel, see Access the Application Service Defini-
tions, page 112.

2 Display the application service definition you want to modify.

3 Type “M” in Action.

4 For each method or business object that requires a special steplib, specify the steplib
name in Steplibs.

5 Press Enter to update the application service definition.

BSIF__MP Construct Spectrum Administration Subsystem BSIF__11
Jan 30 Maintain Application Service Definitions 3:15 PM

 Action (A,B,C,D,M,N,P) _

 Domain..................: DEMO____ *
 Object..................: PRODUCT_________________________
 Version.................: 01 / 01 / 01
 Description.............: PRODUCT______________________________________
 Default subprogram proxy: PRODMSP_
 Steplibs................: ________________________________ *

 Subprogram
 01 Method Name Proxy Steplibs *
 -------------------------------- -------- --------------------------------
 1 BROWSE__________________________ PRODBSP_ ________________________________
 2 DELETE__________________________ ________ ________________________________
 3 EXISTS__________________________ ________ ________________________________
 4 GET_____________________________ ________ ________________________________
 5 INITIALIZE______________________ ________ ________________________________
Command: __
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
confm help retrn quit flip pref bkwrd frwrd main
Appl Srvc Definition DEMO-PRODUC displayed successfully
– 115 –

Construct Spectrum SDK Reference __
6

Overriding Block Handling
The subprogram proxy optimizes level 1 parameter block handling for the default meth-
ods provided with your object maintenance and object browse subprograms. This
optimization ensures that only the required data for a particular method is sent from the
server to the client. This section describes the default block handling provided with the
subprogram proxy and how to override this block handling, if necessary.

Default Block Handling
The following tables define which level 1 blocks are sent for each default method in
your maintenance and browse subprograms.

Maintenance Subprogram Blocks Sent to Server

Function Business
Object
Data

Business
Object

Key

Restricted
Data

CDAOBJ2
(function)

CDPDA-M
(message)

DELETE X X X

EXISTS X X

GET X X

INITIALIZE X

NEXT X X

STORE X X

UPDATE X X X
– 116 –

__ Using the Subprogram-Proxy Model
6

Maintenance Subprogram Blocks Returned to Client

Function
and Flags

Business
Object
Data

Business
Object

Key

Restricted
Data

CDAOBJ2
(function)

CDPDA-M
(message)

DELETE and
(Error = True or
Return Object =
False)

X X

DELETE and
(Clear After =
False)

X X X

GET and
Exists = False

X X

EXISTS X X

NEXT and
Exists = False

X X

STORE and
(Error = True or
Return Object =
False)

X X

STORE and
(Clear After =
False and
Derived Data =
False)

X X X

UPDATE and
(Error = True or
Return Object =
False)

X X

UPDATE and
(Clear After =
False and
Derived Data =
False)

X X X

All Other
Combinations

X X X X
– 117 –

Construct Spectrum SDK Reference __
6

Browse Subprogram Blocks Sent to Server

Browse Subprogram Blocks Returned to Client

Specify Overrides
You can override the default block handling rules listed in the previous tables and pro-
vide your own rules. For example, if you add a new method, you can specify which
blocks are sent to the client. By default, custom methods transmit all data blocks.

� To override the default block handling:

1 Define the custom block handling on the server.

2 Define the custom block handling on the client.

Step 1: Define Block Handling On Server
You can set block handling overrides for every level 1 data block in a subprogram’s pa-
rameter data. Define these overrides in the SET-RETURN-BLOCKS user exit for the
subprogram proxy and regenerate the proxy. For information about regenerating, see
Generating a Subprogram Proxy, page 105.

Disable a Block Unconditionally

� To disable a block unconditionally so that it is never sent to the client:

1 Select the SET-RETURN-BLOCKS user exit for the subprogram proxy.

2 Reset any block indicator that is not to be sent to the client.
Block indicators identify a data block and are named #PDA.#RB-blockname, where
blockname is the name of the level 1 variable that defines the block.

Note: Code the statements in this user exit as part of a DECIDE FOR statement.

Function Key Data Row Data Restricted
Data

CDBRPDA
(function)

CDPDA-M
(message)

BROWSE X X X

Function Key Data Row Data Restricted
Data

CDBRPDA
(function

CDPDA-M
(message)

BROWSE X X X X X
– 118 –

__ Using the Subprogram-Proxy Model
6

3 Add the following code:

WHEN #SPC-TRUE
RESET #PDA.#RB-BLOCKNAME/* Unconditional assignment

Send Blocks to the Client Conditionally

� To conditionally send blocks to the client:

In the SET-RETURN-BLOCKS user exit of the subprogram proxy, add a DECIDE
clause that resets certain block selectors based on a condition. For example:

 **SAG DEFINE EXIT SET-RETURN-BLOCKS
 /* Do not return restricted data on a delete
 WHEN CDAOBJ2.#FUNCTION = CDLMMETH.DELETE

RESET #PDA.#RB-CUSTMSR
 /* Do not return object or restricted data on existence check
 WHEN CDAOBJ2.#FUNCTION = CDLMMETH.EXISTS

RESET #PDA.#RB-CUSTMSA
 #PDA.#RB-CUSTMSR

**SAG END-EXIT

Adhere to the following guidelines when assigning the blocks:

• Know the name of each block you are assigning.
The format is #PDA.#RB-blockname, where blockname is the name of the level 1 field.

• Reset only those blocks that are not to be returned to the client.

Step 2: Define Block Handling On Client
For information about defining block handling on the client, see Step 3: Update the
Library Image File, page 114.
– 119 –

Construct Spectrum SDK Reference __
6

Versioning Support
You can create new versions of a subprogram proxy without affecting older versions.
The version number specified when entering the model input parameters is part of the
key used to store the associated application service definition. Versioning allows you to
maintain a system without affecting existing applications. Each request issued from the
client includes its required version number.

Note: When creating a new version of a subprogram proxy, use a new name. Other-
wise, the existing version is overwritten.

Security Implications
Security definitions do not include the version number. This means that if the only thing
about the subprogram proxy that changes is the version number, it will automatically be
included in existing security definitions for the domain and business object name spec-
ified. If it requires a new security definition, the subprogram proxy domain or business
object name should be changed to force the creation of a new application service defi-
nition. This new application service definition can then be secured as necessary.

Debugging Support
Subprogram proxies automatically support the DATASIZES and INITIALIZE trace
options. These options return the size of the data blocks and their initialized values and
are useful when debugging an application. You can add additional trace options in the
USER-TRACE-COMMANDS user exit for the subprogram proxy.

For more information, see Debugging Your Client/Server Application, page 161.
– 120 –

__
7

USING BUSINESS DATA TYPES (BDTS)

This chapter describes business data types (BDTs) as they relate to client/server and
web applications. It describes the composition of BDTs and how to create and use them.

The following topics are covered:

• Overview, page 122

• Understanding and Using BDTs, page 123

• Creating and Customizing BDTs, page 141
– 121 –

Construct Spectrum SDK Reference __
7

Overview
The first section of this chapter is of particular interest to users of BDTs. It discusses
the concept of BDTs in general terms and gives you a good understanding of the bene-
fits of using BDTs and how they work. The second section is of interest to authors of
BDTs. It discusses how to create and customize BDTs in both the client/server and web
framework components.

BDTs provide a way to present data to the user in a format that is consistent and based
on business conventions rather than on programming language conventions. For exam-
ple, a BDT can format a phone number with dashes (-) or some other delimiter value so
that it is easily recognized by the user as a phone number.

To accomplish this, BDTs convert data values between simple internal Visual Basic
data types (such as String, Long, Currency, Date, and Boolean) and values that are dis-
played to the user in a browse or maintenance dialog.

Construct Spectrum also uses BDTs to create sample strings to calculate the length of
GUI controls.
– 122 –

__ Using Business Data Types (BDTs)
7

Understanding and Using BDTs
There is some commonality between BDTs that are used in client/server applications
and web applications. The following sections discuss BDTs as they relate to both the
client/server and web framework components.

Benefits of Using BDTs
Using business data types offers three primary benefits:

• Consistency
BDTs ensure that a specific data type is displayed in the same format throughout the
application.

• Flexibility
BDTs recognize a variety of input formats which makes using the application easier.

• Accuracy
BDTs centralize the validation code for a data type and provide a consistent mechanism
for returning validation error messages.

Relationship With Visual Basic Data Types
The relationship between Visual Basic data types and business data types is many-to-
many. That is, a Visual Basic Double variable can represent more than one BDT, such
as Phone Number, AMEX Number, or Currency. Conversely, a Phone Number BDT
could be mapped to Visual Basic String, Double, or Float variables. The Visual Basic
data types to which a BDT can be applied depend on the considerations written into the
BDT’s conversion routine.

Relationship Between Visual Basic Data Types And BDTs

Integer

Float

Double

Long

String

Byte

SSN

Postal Code

AMEXNumber

Currency

Date

Phone Number

BDT
Conversion
Routines

Business Data
Type

Visual Basic
Data Type
– 123 –

Construct Spectrum SDK Reference __
7

Construct Spectrum includes a set of standard BDTs. You can use these BDTs as they
are or you can customize them. You can also write your own BDTs. If there is a piece
of information whose format you are constantly validating, consider writing a BDT to
handle it. Once a BDT has been created, you can use it in other applications.

Composition of a BDT
A BDT is composed of a name, a conversion routine, and the list of modifiers it can use.

Name
Applications need only the name of the appropriate BDT to perform the conversion to
and from a display value.

Conversion Routine
The conversion routine converts data between an internal Visual Basic data type and a
displayable format.

The BDTConversion object is used internally by BDT conversion routines. When the
application calls one of the BDT controller’s conversion methods, the controller creates
a BDTConversion object and initializes it with details about the conversion requested.
For example, the BDT controller will supply the BDT name, any modifiers associated
with it, and any Natural format provided. The BDT controller then calls the conversion
routine for the specified BDT, passing the BDTConversion object as a parameter.

The conversion routine uses the properties of the BDTConversion object to determine
what type of conversion to perform (convert to display, convert from display, or create
sample string), to get information about the modifiers used, the Natural format speci-
fied, and to return the converted value.

Modifiers
Use modifiers to override the default conversions that are performed by a BDT’s con-
version routine.
– 124 –

__ Using Business Data Types (BDTs)
7

Elements of a BDT
Each time an application uses a business data type, it involves a number of elements.
The following sections describe these elements and how they relate to BDTs.

BDT Controller
The BDT controller knows about all the BDTs that the application uses. This is because
the application registers all of its BDTs with the BDT controller when the application
is started. Whenever an application uses a BDT, it relies on the BDT controller to locate
and call the associated conversion routine as follows:

1 The application calls the BDT controller and passes it all the necessary parameters,
including the name of the BDT and the value to be converted.

2 The BDT controller locates the conversion routine for the BDT.

3 The BDT controller calls the conversion routine, forwarding the parameters from the
application.

4 The conversion routine does the conversion and returns the result to the BDT controller.

5 The BDT controller returns the result to the application.

The application needs only the name of the BDT to accomplish the required conversion.
The BDT controller is declared in the client/server framework as follows:

Public BDT As New BDTController

In the web framework, the BDTController object is a global multi-use object, meaning
that you can invoke properties and methods of this class as if they were global functions.
You do not have to create an instance of this class first because one will automatically
be created.

How the Client Framework Uses BDTs
The client framework use BDTs to display values read from a NaturalDataArea object
on the client. The values are then displayed in GUI controls. The following diagram
shows the process of reading a value from a NaturalDataArea object on the client, dis-
playing it in a GUI control where the user can modify the value, and copying the new
value back to NaturalDataArea on the client. Once the value is copied back to the client,
it can be sent to the server. The BDT in the following diagram is named DATE and is
applied to the BIRTH-DATE field:
– 125 –

Construct Spectrum SDK Reference __
7

Processing Date BDT Applied to BIRTH-DATE Field

1 Reading the field value from the Natural data area returns a Visual Basic Variant data
type.

2 This value is formatted for display by the Date BDT’s conversion routine through a call
to ConvertToDisplay. The result is a String value.

3 The string is displayed on a form by assigning it to a GUI control. The value displayed
in the text box can be edited by the user.

4 When the user is finished editing, the edited value is read from the Text property for the
TextBox control.

5 This string is converted back to a variant by the Date BDT’s conversion routine through
a call to ConvertFromDisplay. If the string does not contain a valid date, or the
conversion routine cannot interpret the user’s value correctly, an error is returned.

6 The new value is assigned back to the field in the Natural data area, which can then be
sent to the server, for example, in the case of an update to the server database.

In a web application, BDTs are implemented internally. To change the BDT used by a
field, you can define a user exit. For information, see Customizing a Page Handler,
page 84, Construct Spectrum SDK for Web Applications.

Conversion Routines
When an application uses a BDT, the BDT controller calls the conversion routine. The
conversion routine offers three services that affect the appearance of data:

• Converts the value in a Visual Basic data type to display in business format.

• Converts the value from its business format display to a Visual Basic data type.

• Creates a sample display value that is representative of the display values produced by
the BDT.

In applying the second service, the conversion routine returns an error message if an in-
appropriate value is passed to it.

D a te
Va rian t

N a tural D ata A rea

01 CUSTOMER
 02 NUMBER(N6)
 02 NAME(A30)
 02 BIRTH-DATE(D)
 02 …

02 /27/1 954

D a te
D isp laye d in

Tex t B ox

2 : C on vert to
D isp lay

D a te BD T
C o nvers ion

R o utine

4 : C on vert F rom
D isp lay

Str ing 5 : W rite
BIR TH -D A TE fie ld

3 : R ea d fro m
Tex tBox.Te xt

1 : R ea d BIR TH -D A TE file

Str ing

D a te
Va rian t
– 126 –

__ Using Business Data Types (BDTs)
7

ConvertToDisplay Method
The ConvertToDisplay method converts a value from a Visual Basic data type to a dis-
play format. This method takes the value, and either the name of a BDT or a Natural
format, and returns a string that is formatted for display. The syntax is:

Function ConvertToDisplay(RawData As Variant, _
 Optional BDTName As String, _
 Optional NatFormatLength As String _
) As String

For example, in a client/server application:

txtBirthDate.Text = BDT.ConvertToDisplay(custpda("BIRTH-DATE"), _
 "Date")

You can specify a BDT name, a Natural format, or both. If you do not specify a BDT
name, the BDT controller uses the Natural format (for example, N6) to choose an ap-
propriate BDT first, and then calls that BDT’s conversion routine.

If you do specify a BDT name, that BDT’s conversion routine can use the optional Nat-
ural format to further refine how it performs the conversion or interprets the data. For
example, the Numeric BDT uses the Natural format to determine how many decimal
places to display. The Date BDT uses the Natural format as follows:

• If the Natural format is D, interpret the variant data as a date.

• If the Natural format is N6, P6, or A6, interpret the variant data as a date in the format
YYMMDD.

• If the Natural format is N8, P8, or A8, interpret the variant data as a date in the format
YYYYMMDD.
– 127 –

Construct Spectrum SDK Reference __
7

ConvertFromDisplay Method
The ConvertFromDisplay method converts a value from a display format to a Visual
Basic data type. This method takes the display value, and either the name of a BDT or
a Natural format, and returns a variant value that can be manipulated further by the ap-
plication. The syntax is:

Function ConvertFromDisplay(FormattedData As String, _
 Optional BDTName As String, _
 Optional NatFormatLength As String _
) As Variant

For example, in a client/server application:

custpda("BIRTH-DATE") = BDT.ConvertFromDisplay(txtBirthDate.Text, _
 "Date")

You can specify a BDT name, a Natural format, or both. Using these optional parame-
ters has the same result as in ConvertToDisplay.

ConvertInPlace Method
The ConvertInPlace method allows you to validate and reformat a value in a GUI con-
trol, such as in a LostFocus event. This method takes a formatted value by reference,
internally calls ConvertFromDisplay, and then passes the result back to ConvertToDis-
play which returns the new formatted result. For example, in a client/server application:

Private Sub txtBirthDate_LostFocus()

 Dim stemp As String

 stemp = txtBirthDate.Text
 BDT.ConvertInPlace stext, "Date"
 txtBirthDate.Text = stemp

End Sub

When the user moves out of the field, the field value is validated and, if valid, is refor-
matted according to the date format used by the BDT. For example, if a user enters “feb
5”, the input is reformatted to the date format chosen, such as 2/5/1999, when the user
leaves the field. The syntax is:

Function ConvertInPlace(ByRef FormattedData As String, _
 Optional BDTName As String, _
 Optional NatFormatLength As String _
) As Variant

You can specify a BDT name, a Natural format, or both. Using these optional parame-
ters has the same result as in ConvertToDisplay.

The returned value is the value returned by the internal call to ConvertFromDisplay, so
you can perform additional processing on the value entered by the user.
– 128 –

__ Using Business Data Types (BDTs)
7

CreateSampleString Method
The CreateSampleString method creates a sample displayable value for each BDT. This
sample value can be used as a template to determine the dimensions of the associated
control or to determine how wide a column in a browse dialog must be to display the
BDT value. The syntax is:

Function CreateSampleString(Optional BDTName As String, _
 Optional NatFormatLength As String _
) As String

You can specify a BDT name, a Natural format, or both. Using optional parameters al-
lows you to further refine how the BDT performs the conversion or interprets the data.

You can use the returned value to calculate the required width of a ListView control col-
umn or a TextBox control used to display this business data type.

Modifiers
The processing performed by a BDT can be refined using special modifiers. Each busi-
ness data type defines its own set of modifiers to provide the flexibility it needs.

Individual modifiers are separated by commas, and each modifier must be introduced
by a name. Modifiers have names such as TRIM, CASE, DEC, and ROUND.

In calls to the conversion routines, use the format name=value, where name is the mod-
ifier you want to use and value controls the behavior of the conversion routine for the
given modifier. Append modifiers to the BDT name parameter with commas. The fol-
lowing code invokes the Numeric BDT’s conversion routine and uses the DEC modifier
to specify that two decimal places should be displayed in the value and the ZERO mod-
ifier to suppress display of the value when it is 0.

For example, in a client/server application:

txtHours.Text = BDT.ConvertToDisplay(dblHours, _
 "Numeric,DEC=2,ZERO=OFF")

For more information about the modifiers supported by each BDT, see BDTs Supplied
With Construct Spectrum, page 133.
– 129 –

Construct Spectrum SDK Reference __
7

Natural Formats
When you omit the BDT name in calls to the ConvertToDisplay, ConvertFromDisplay,
ConvertInPlace, or CreateSampleString method, you must provide the Natural format.
The BDT controller uses this format to choose which BDT to use for the conversion. It
does this by calling a Natural-to-BDT mapper function. This function provides the most
appropriate BDT to use for each Natural format.

The mapper function must be registered with the BDT controller. In the client/server
framework, the mapper is implemented as a method of the StandardBDTs class and is
registered in its SelfRegister method. For more information, see Register a BDT, page
145.

For information about registering BDTs in the web environment, see Register BDTs in
the Web Framework, page 151.
– 130 –

__ Using Business Data Types (BDTs)
7

Handling Errors Returned from a BDT Conversion
Routine

The BDT controller has four properties that return error information from the conver-
sion routines. These properties can be examined after a call to ConvertFromDisplay or
ConvertInPlace. The BDT conversion routines place information in these properties if
a conversion error occurs. The application can then examine the properties on return
from the call and display the error to the user:

To show the user where invalid characters are, an application can use the ErrorPos and
ErrorLen properties to set the SelStart and SelLength properties of a TextBox control.

Example code using error information properties in a client/server application

Private Sub txtBirthDate_LostFocus ()

 Dim sdate As String

 sdate = txtBirthDate.Text
 BDT.ConvertInPlace sdate, "Date"
 If BDT.ErrorCode Then
 txtBirthDate.SelStart = BDT.ErrorPos
 txtBirthDate.SelLength = BDT.ErrorLen
 MsgBox BDT.ErrorMsg, vbExclamation
 txtBirthDate.SetFocus
 Else
 txtBirthDate.Text = sdate
 End If

End Sub

Warning:
A conversion routine may set ErrorPos, but not ErrorLen. In the sample code above, it
will not cause problems.

Property Contents

ErrorCode Numeric error code. Each BDT can define its own error codes. The
application makes program flow decisions based on this value.

ErrorMsg Error message. This message should provide useful information.

ErrorPos Position of the first invalid character.

ErrorLen Number of invalid characters.
– 131 –

Construct Spectrum SDK Reference __
7

How Web Applications Use BDTs
Construct Spectrum web applications use BDTs as a way to format and validate user
input for display on web pages. No formatting or validation is done in the web browser,
instead the work is done on the web server inside of the Spectrum web application com-
ponent, ABOInterface. To determine what BDTs to use, the page handler queries the
ABO at runtime for the logical format each property provides. These logical formats are
translated into BDT names. You can override the translation and logical formats of
properties in the BDT.Overrides user exit.

For example, in a page handler:

Private Sub ICSTPageHandler_Initialize(...)

 With m_ABOInterface
 Set .ABOObject = m_ABO

 .Init ERR_SESSION_KEY, m_RequestData.Session, m_RequestData.Request
 '<cst:EXIT Name="BDT.Overrides">
 ' For the CustomerPhoneNumber property use a phone BDT.
 .BDT("CustomerPhoneNumber") = "Phone"
 ' Use an alpha BDT for the logical format PostalCode.
 .LogicalFormatBDT("PostalCode") = ”Alpha”

 '</cst:EXIT>
 End With
End Sub

When a maintenance or browse HTML template is parsed and FIELD tags are detected,
the value to be displayed is formatted using the correct BDT.

When a user submits a web page that includes properties on an HTML form to be up-
dated, the ABOInterface component is used to update these properties. Part of the
process includes validating the data included on the form before updating the property.
If a BDT validation error occurs, the property is flagged for an error and the user's ac-
tion is cancelled. When the web page is returned to the user, the properties in error are
highlighted in red (Internet Explorer) or an error graphic is displayed next to the field
(Netscape Navigator) and the error messages are displayed at the bottom of the page.

For more information, see Customizing a Page Handler, page 84, Construct Spectrum
SDK for Web Applications.
– 132 –

__ Using Business Data Types (BDTs)
7

BDTs Supplied With Construct Spectrum
This section describes the standard BDTs supplied with Construct Spectrum. The fol-
lowing sections describes each BDT, lists the modifiers it supports, and describes what
each modifier does.

Alpha
Apply the Alpha BDT to alphanumeric data.

Boolean
Apply the Boolean BDT to data that can have a value of either False or True.

Modifier Description

TRIM=L|T|LT Trims leading spaces (L), trailing spaces (T), or leading and
trailing spaces (LT). Default is no trimming. This affects
ConvertToDisplay and ConvertFromDisplay behavior.

CASE=U|L Forces the text into uppercase (U) or lowercase (L). Default is to
not change the case. This affects ConvertToDisplay and
ConvertFromDisplay behavior.

Modifier Description

EM=<False>|<True> Displays the <False> string for False and the <True> string
for True. Default is EM=False|True. ConvertFromDisplay
compares the formatted data to the <False> and <True>
strings and recognizes a match if the value matches
unambiguously to the beginning of either string. This is not
case-sensitive.

The following examples show various types of edit mask
values, user input, and each result.

EM Value

EM=False|True

Formatted Value

T
t
tr
TRU
F
false
yes
<blank>

Raw Value

True
True
True
True
False
False
Error: Invalid
Error: Invalid
– 133 –

Construct Spectrum SDK Reference __
7

Time
Apply the Time BDT to any time value. The Time BDT supports the following Natural
formats:

Numeric
Apply the Numeric BDT to any numeric data.

EM=True|False true
F

False
True

EM=Off|On off
on
o

False
True
Error: Ambiguous

EM=|X x
<blank>
xx

True
False
Error: Invalid

Natural
Format

Visual Basic
Data Type

Description

T Date, Variant If the value is Null, ConvertToDisplay returns
an empty string.

N7 or P7 Long, Single, Double,
or Currency

Numeric value is interpreted as HHMMSST.

A7 String Alpha value is interpreted as HHMMSST.

Modifier Description

DEC=n Forces the display of n decimal places. Default is to display as
many decimal places as there are significant decimal digits when
the Natural format is not provided, or to use a fixed number of
decimal places if the Natural format is provided. In this latter case,
use DEC=-1 to ignore the Natural format and display significant
decimal digits only.

ROUND=n Rounds the value to n decimal places. If n is negative, it rounds to
the left of the decimal place. Default is no rounding.

GS=OFF|ON Used to suppress (OFF) or display (ON) group separators
(thousands separators). Default is GS=OFF.

Modifier Description (continued)
– 134 –

__ Using Business Data Types (BDTs)
7

Currency
Apply the Currency BDT to any currency values.

ZERO=OFF|ON Suppresses (OFF) or displays (ON) zero values. Default is
ZERO=OFF.

SIGN=OFF|ON Suppresses (OFF) or displays (ON) the sign for positive numbers.
Default is SIGN=OFF.

MULT=n ConvertToDisplay multiplies the raw value by n.
ConvertFromDisplay divides the value by n before returning the
raw value. n can be any positive or negative numeric value except
zero. Default is MULT=1.

SCIENTIFIC=
OFF|ON

Displays the value in normal (OFF) or scientific notation (ON).
Default is SCIENTIFIC=OFF.

EM=xxx Any format string understood by the Visual Basic Format function.
ConvertToDisplay uses the Format function to format the value
according to that format string.

STRICT=
OFF|ON

Used by ConvertFromDisplay to determine how to deal with non-
numeric characters in the formatted value. OFF quietly discards
non-numeric characters and ON generates an error if the value
contains non-numeric characters. The default is STRICT=ON. Has
no effect on ConvertToDisplay.

Modifier Description

ZERO=OFF|ON Suppresses (OFF) or displays (ON) zero values. Default is
ZERO=ON.

Modifier Description (continued)
– 135 –

Construct Spectrum SDK Reference __
7

Date
Apply the Date BDT to any date value. The Date BDT supports the following Natural
formats.

Natural
Format

Visual Basic
Data Type

Description

D and T Date, Variant If the value is Null, ConvertToDisplay returns
an empty string.

N6 or P6 Long, Single, Double,
or Currency

Numeric value is interpreted as YYMMDD.

N8 or P8 Long, Single, Double,
or Currency

Numeric value is interpreted as
YYYYMMDD.

A6 String Alpha value is interpreted as YYMMDD.

A8 String Alpha value is interpreted as YYYYMMDD.
– 136 –

__ Using Business Data Types (BDTs)
7

Referencing BDTs in Predict
You can attach a BDT name to a field in Predict by adding a keyword with the same
name as the BDT and prefix it with ‘BDT_’. For example, to cause an N8 field to be
treated as a date value when displayed on a browse or maintenance dialog, add the
BDT_DATE keyword to the field.

The following table lists the BDT keywords loaded into Predict during installation:

BDT Predict Keyword

Alpha BDT_ALPHA

Boolean BDT_BOOLEAN

Currency BDT_CURRENCY

Date BDT_DATE

Numeric BDT_NUMERIC

Phone BDT_PHONE

PostalCode BDT_POSTALCODE

Time BDT_TIME

ZipCode BDT_ZIPCODE
– 137 –

Construct Spectrum SDK Reference __
7

Defining BDTs
One of the most powerful things about BDTs is that you can customize existing BDTs
or create your own. If there is information whose format you are constantly validating,
consider writing a BDT to handle it. A perfect case for a customized BDT might be an
organization-specific account number.

To define a BDT, you must provide the following:

• Name for the BDT

• List of modifiers it will support

• Display format it will use

• Natural formats it will support

• Variant data types it will support

Tip: To maintain consistency, follow the naming convention used in the Construct
Spectrum client framework: use short names consisting of one or two words and
mixed case (capitalize the first letter of each word).

Name
A BDT name can be any consecutive string of characters except commas. Leading and
trailing spaces are ignored, and uppercase and lowercase are considered identical.

Modifiers
Individual modifiers are separated by commas and each modifier is introduced by a
name. Modifiers have names such as TRIM, CASE, DEC, and ROUND. Modifier
names can be any consecutive string of characters except commas or equal signs. Lead-
ing and trailing spaces are ignored; uppercase and lowercase are considered identical.

Natural Formats
In addition to modifiers, all BDT handlers can be passed the format and length of the
Natural variable that will receive the contents of the converted strings. For example, the
BDT handlers can use this information to apply truncation rules or insert defaults.

When you omit the BDT name in calls to ConvertToDisplay, ConvertFromDisplay,
ConvertInPlace, and CreateSampleString, you must provide the Natural format. The
BDT controller uses the Natural format to choose which BDT to use for the conversion.
It does this by calling a Natural-to-BDT mapper function supplied in the Construct
Spectrum client framework. The mapper function must also be registered with the BDT
controller.
– 138 –

__ Using Business Data Types (BDTs)
7

Variant Data Types
When converting from formatted data to raw data, decide what type of variant to use for
the raw data. Using a phone number BDT, for example, you can return the phone num-
ber as a Visual Basic Double, String, Currency, or an array. As all of these data types
have enough precision to store all digits of a phone number, choose a data type that is
convenient for an application programmer.

The returned data type may also depend on the Natural format passed to the conversion
routine. For example, a seven-digit telephone number with area code can be stored in
an A10 field or an N10 or P10 field. The conversion routine can return a String variant
if the Natural format is A and a Double variant if the Natural format is N or P.
– 139 –

Construct Spectrum SDK Reference __
7

Returning Conversion Error Information
Conversion routines return conversion error information to the BDT controller in the
error properties of the BDTConversion object. The BDT controller copies these prop-
erties to its own properties having the same names. The client application examines the
error properties of the BDT controller to determine if an error occurred.

When returning error information, the most important property to set in the conversion
routine is ErrorCode. If this property is not set, the BDT controller and the client appli-
cation do not know that an error has occurred because they make program flow
decisions based on ErrorCode.

If you set ErrorCode, also set ErrorMsg, giving the client application a message to dis-
play to the user. To provide the most information to the client application, set ErrorPos
and then optionally set ErrorLen.

When converting from formatted data to raw data, your conversion routine can range
from very forgiving in the input allowed to very strict. For example, a forgiving conver-
sion routine may throw away any non-numeric characters in a numeric BDT without
returning an error, while a strict conversion routine might require the input to match a
rigid format to be converted without error.

A forgiving conversion routine is easier to code because it contains comparatively few
validations. Coding a strict conversion takes more time and may be more difficult to if
the routine must examine the input character-by-character to determine if it is valid.
However, your error messages can be more informative.
– 140 –

__ Using Business Data Types (BDTs)
7

Handling Runtime Errors
Your conversion routine should use Visual Basic runtime error handling to trap any
runtime errors that may occur. If they are not trapped by the conversion routine, Visual
Basic transfers the error up the call chain to the first enabled error handler. The BDT
controller that called the conversion routine has an enabled error handler and converts
the error into &H80040206 — An unhandled runtime error occurred when calling the
method %1 in object %2:Error %3, %4.

The client application is typically not prepared to handle a runtime error that occurs in
a conversion routine that it called indirectly. Therefore, it is imperative that Visual Ba-
sic runtime errors are trapped in the conversion routines and translated into BDT-
specific errors that are documented and returned in the error properties of
BDTConversion.

Creating and Customizing BDTs
This section discusses how to create and customize BDTs. The client/server and web
frameworks use an open architecture that allows you to add business data types tailored
to your application specifications.

BDTs and the Client/Server Framework
This section discusses how the client/server framework uses BDTs. For information
about creating BDTs for the web framework, see BDTs and the Web Framework,
page 150.

Understanding the BDT Objects
The Construct Spectrum client framework has two objects that support BDTs: BDT-
Controller and BDTConversion. The properties and methods of these objects are shown
in the following diagram:
– 141 –

Construct Spectrum SDK Reference __
7

Properties and Methods of the BDT Objects

The BDTController object is used by the application to register its BDTs (the startup
code in the Construct Spectrum client framework does this for you) and to call BDT
conversion routines.

Each of the ConvertToDisplay, ConvertFromDisplay, ConvertInPlace, and CreateSam-
pleString methods and the ErrorCode, ErrorMsg, ErrorPos, and ErrorLen error
properties are discussed in separate sections in this chapter. The remaining methods are
related to registering BDTs, which is described in Register a BDT, page 145.

BDTController

ErrorLen

ErrorPos

ErrorMsg

ErrorCodeGetBDT

CreateSampleString

ConvertInPlace

ConvertFromDisplay

ConvertToDisplay

RegisterNaturalBDTMapper

GetBDTRoutine

DeregisterBDT

RegisterBDT

SetBDTName

BDTName

Conversion

ErrorPos

FormatLength

Decimals

Length

Format

ErrorMsg

ErrorCode

Modifiers

HasModifier

Modifier

RawData

FormattedData

ErrorLen

BDTConversion

Property

Method Method

Property

Object

Key

Object
– 142 –

__ Using Business Data Types (BDTs)
7

Create BDT Conversion Routines
BDT conversion routines must be implemented as public methods of an OLE automa-
tion object. This object can reside in an in-process server, an out-of-process server, or
as a class in the Visual Basic project.

All BDT conversion routines must have the following syntax:

Public Sub xxx(BDTC As BDTConversion)

where xxx can be any name.

The following table describes all of the properties and methods of the BDTConversion
object for the client/server framework. For the examples, assume the following call was
made:

strHours = BDT.ConvertToDisplay(dblHours, _
 "Numeric,ZERO=OFF,ROUND=2,STRICT=ON", _
 "N3.2")

Property or Method Description

Conversion Tells the conversion routine what type of conversion to
perform. Can be one of the following constants:

bdtConvertToDisplay
bdtConvertFromDisplay
bdtCreateSampleString

FormattedData and
RawData

Is one of the following:
• When Conversion = bdtConvertToDisplay, the

conversion routine reads the value in RawData, formats
it for display, and assigns the formatted string value to
FormattedData.

• When Conversion = bdtCreateSampleString, the
conversion routine assigns a sample string to
FormattedData. For example:

With BDTC
 Select Case .Conversion
 Case bdtConvertFromDisplay
 .RawData = cvtToRaw(.FormattedData)
 Case bdtConvertToDisplay
 .FormattedData = cvtToDisp(.RawData)
 Case bdtCreateSampleString
 .FormattedData = createSample()
 End Select
End With

Modifiers Returns the number of modifiers specified by the caller. In
the example, Modifiers returns 3.
– 143 –

Construct Spectrum SDK Reference __
7

Modifier Returns the value of a specific modifier or can be used to
enumerate the modifiers used. In the example:

With BDTC
 Print .Modifier("ZERO") ' Prints "OFF"
 Print .Modifier(1) ' Prints "ZERO"
 Print .Modifier(2) ' Prints"ROUND"
 Print .Modifier(.Modifier(1))' Prints "OFF"
End With

Note: Modifier names, such as ZERO or ROUND, are passed to
the BDT conversion routine in uppercase. You do not have
to use case-sensitive string comparisons when checking
which modifiers were used.

HasModifier Returns True if a specified modifier was used and False if
not. In the example:

With BDTC
 Print .HasModifier("ZERO") ' Prints True
 Print .HasModifier("ROUND") ' Prints True
 Print .HasModifier("DEC") ' Prints False
 Print .HasModifier("#$%^&") ' Prints False
End With

FormatLength Returns the Natural format string used in the call. In the
example, FormatLength returns N3.2.

Format, Length, and
Decimals

Returns the format, length, and decimal portions,
respectively, of the Natural format string used in the call.
In the example, Format contains N, Length contains 3, and
Decimals contains 2.

BDTName Returns the name of the BDT from the call. In the example,
BDTName contains Numeric.

Note: BDT names are passed to the BDT conversion routine
with the capitalization used when the BDT was registered.
For example, if RegisterBDT was called to register the
BDT mIxEdCase, and then ConvertToDisplay was called
for the BDT MixedCase, BDTC.BDTName contains
mIxEdCase.

SetBDTString Changes the BDT name and modifiers in the
BDTConversion object.

ErrorCode, ErrorMsg,
ErrorPos, and ErrorLen

Contain error information. The conversion routine should
assign values to these properties if a conversion error
occurred.

Property or Method Description (continued)
– 144 –

__ Using Business Data Types (BDTs)
7

To see how these properties and methods are used in BDTs, examine the conversion
routines in the StandardBDTs.cls and CustomBDTs.cls modules.

Register a BDT
To make a BDT available to an application, the BDT controller needs to know about
the BDT. This is done by registering the BDT with the BDT controller. To register the
BDT, tell the BDT controller the name of the BDT and provide a pointer to the conver-
sion routine. Conversion routines must be implemented as methods of an OLE
automation object. To invoke a method, you must have a reference to the object in an
object variable. The pointer to the BDT conversion routine consists of a reference to an
object and the name of a public method in that object.

The registration process is shown in this example from the Construct Spectrum client
framework. This code creates the BDT controller and instantiates the objects that con-
tain the BDT conversion routines:

Public BDT As New BDTController

Private Sub InitializeBDTs()

 Dim StandardBDTs As New StandardBDTs
 Dim CustomBDTs As New CustomBDTs

 StandardBDTs.SelfRegister BDT
 CustomBDTs.SelfRegister BDT

End Sub

The registration actually occurs in the SelfRegister methods. The following example
shows registration within the StandardBDTs class:

Public Sub SelfRegister(BDT As BDTController)
 BDT.RegisterBDT "Alpha", Me, "Convert_Alpha"
 BDT.RegisterBDT "Boolean", Me, "Convert_Boolean"
 BDT.RegisterBDT "Numeric", Me, "Convert_Numeric"
 BDT.RegisterBDT "Currency", Me, "Convert_Currency"
 BDT.RegisterBDT "DateTime", Me, "Convert_DateTime"
End Sub

In the RegisterBDT method, the first parameter is the name of the BDT, the second pa-
rameter is the object reference, and the third parameter is the name of a conversion
routine in the object (a public method).

The BDT controller maintains a list of all BDT names internally along with the object
reference and method to call for each.
– 145 –

Construct Spectrum SDK Reference __
7

Deregister a BDT
To deregister one or more BDTs, call the DeregisterBDT method as follows:

BDT.DeregisterBDT ' Deregisters all BDTs.
BDT.DeregisterBDT Me ' Deregisters only the BDTs in the
 ' specified object.
BDT.DeregisterBDT Me, "Numeric" ' Deregisters only the Numeric BDT in
 ' the specified object.

Deregistering BDTs is useful if you need to release all references to an object so that
the object can be destroyed. You can then recreate the object and re-register all BDTs
it implements.

Locate the Conversion Routine for a BDT
To locate the conversion routine for a given BDT, use the GetBDTRoutine to return the
object reference and method name of the conversion routine. The syntax is:

Sub GetBDTRoutine(BDTName As String, _
 ByRef Handler As Object, _
 ByRef ProcName As String)

If the BDT name has not been registered, Handler will contain Nothing and ProcName
will contain an empty string on return.
– 146 –

__ Using Business Data Types (BDTs)
7

Create a Natural-to-BDT Mapper
The BDT controller calls a Natural to BDT mapper function when the application uses
a conversion function and a Natural format is provided, instead of the name of a BDT.
The mapper provides the most appropriate BDT to use for each Natural format.

A mapper function must be registered with the BDT controller just as BDTs are regis-
tered. In Construct Spectrum, the mapper is implemented as a method of the
StandardBDTs class and is registered in its SelfRegister method as follows:

Public Sub SelfRegister(BDT As BDTController)
 ...
 BDT.RegisterNaturalBDTMapper Me, "NaturalBDTMapper"

End Sub

Public Function NaturalBDTMapper(Format As String, _
 Length As Long, _
 Decimals As Integer) As String

 Dim sbdtstring As String

 ' BDT name was not provided. Pick a default BDT name based on the
 ' Natural format.
 Select Case Format
 Case "A": sbdtstring = BDT_ALPHA & ",TRIM=LT"
 Case "B": sbdtstring = BDT_ALPHA
 Case "D": sbdtstring = BDT_DATE
 Case "F": sbdtstring = BDT_NUMERIC
 Case "I": sbdtstring = BDT_NUMERIC
 Case "L": sbdtstring = BDT_BOOLEAN
 Case "N": sbdtstring = BDT_NUMERIC
 Case "P": sbdtstring = BDT_NUMERIC
 Case "T": sbdtstring = BDT_TIME
 End Select

 NaturalBDTMapper = sbdtstring

End Function

The GetBDT method of the BDT controller returns the name of the BDT used for the
given Natural format. Using the mapper in the previous example:

Print BDT.GetBDT("D") ' Prints "Date"
Print BDT.GetBDT("L") ' Prints "Boolean"
Print BDT.GetBDT("N6") ' Prints "Numeric"
Print BDT.GetBDT("N6.2") ' Prints "Numeric"
– 147 –

Construct Spectrum SDK Reference __
7

Other Considerations
The following sections contain other considerations when creating BDTs.

Use One Conversion Routine with Multiple BDTs
When you register a BDT, you can use the same function pointer for multiple BDTs.
For example:

BDT.RegisterBDT "AccountNumber", Me, "Convert_Numbers"
BDT.RegisterBDT "DeptNumber", Me, "Convert_Numbers"
BDT.RegisterBDT "GroupNumber", Me, "Convert_Numbers"
BDT.RegisterBDT "FileNumber", Me, "Convert_Numbers"

When the application uses the BDT, the conversion routine checks the BDT name to
determine what conversion to perform:

Public Sub Convert_Numbers (BDTC As BDTConversion)
 Select Case BDTC.BDTName
 Case "AccountNumber"
 ...
 Case "DeptNumber", "GroupNumber"
 ...
 Case "FileNumber"
 ...
 End Select
End Sub

Placement of the Conversion Routine
When you create a new BDT conversion routine, you can add it to an existing class or
you can create a new class. Using the client framework, adding the conversion routine
to the existing StandardBDTs or CustomBDTs module requires the fewest changes to
the code. You need only add a method and then change the SelfRegister method to reg-
ister the new BDT.

Warning:
When you save the updated version of the class, ensure that you do not overwrite the
version in the Construct Spectrum client framework directory, unless you want the up-
date to affect all existing and new projects that point to that class.

If you create a new class, change the InitializeBDTs procedure in the Startup module to
instantiate the class and call its SelfRegister method.
– 148 –

__ Using Business Data Types (BDTs)
7

Override a Supplied BDT
When the same BDT name is registered with the BDT controller more than once, the
last one registered is used. This feature can be used if you want to replace a supplied
BDT (conversion routine) with your own. As long as you register your BDT conversion
routine last, it will be called instead of the supplied one.

If you are replacing a supplied BDT routine with your own, you can use the GetB-
DTRoutine method to get the pointer to the current BDT routine before registering your
own and call the original BDT routine in certain cases:

Private m_OldHandler As Object
Private m_OldProcName As String

Public Sub SelfRegister(BDT As BDTController)

 ' Save the pointer to the old routine.
 BDT.GetBDTRoutine "Currency", m_OldHandler, m_OldProcName
 BDT.RegisterBDT "Currency", Me, "Convert_Currency"

End Sub

Public Sub Convert_Currency(BDTC As BDTConversion)

 With BDTC
 Select Case .Conversion
 Case bdtConvertToDisplay
 ' Custom conversion.
 ...
 Case Else
 ' Call the old routine.
 InvokeMethod m_OldHandler, m_OldProcName, Array(BDTC)
 End Select
 End With

End Sub

This example uses the InvokeMethod procedure in the Construct Spectrum client
framework. The InvokeMethod procedure can call any public method of any object by
passing in a reference to the object and the name of the method in a string.

Reference BDTs in Your Application
Each BDT in the StandardBDTs and CustomBDTs classes of the client framework has
an associated named constant in BDTSupport.bas. The name of the constant is the same
as the name of the BDT except it is in uppercase and prefixed with “BDT_”. Instead of
using the BDT name directly through the application, use the named constant. This al-
lows the Visual Basic compiler to check that the BDT is defined in the framework.
When you create your own BDTs, ensure that you add the named constants to
BDTSupport.bas.
– 149 –

Construct Spectrum SDK Reference __
7

BDTs and the Web Framework
The Construct Spectrum web framework uses objects in the BDTLib6 object library to
support BDTs. The following diagram shows these objects, as well as their properties
and methods:

Methods and Properties for the Web Framework Objects

���������		
�

�������
����

�������
��

�������
�

����

��������
�

����������	
�����

���������
�����

��������������

��������	��������

��������������������

���������
�
����������
�

����������������
����� ����
�

����
��������

�
����������
�

��������

��������

��������

������
�

������

����
����

������

�
����

�
���	�

�������
�����

�� ����

�������
����

�����

����
���	�

�����

���

��	���

��!��

����
�

��
�

���

"�	!

�������

��� ��������

��������
�����

����
���

#$%
��

���!��

�
�
– 150 –

__ Using Business Data Types (BDTs)
7

Implement BDTs in the Web Framework
In the Construct Spectrum web framework, BDT conversion routines reside inside a Vi-
sual Basic class module that implements the IBDT interface. This type of Visual Basic
class is called a BDT class, which:

• Implements the IBDT interface

• Contains a BDT conversion routine

The IBDT interface has two methods:

The following sections describe the steps to implement a BDT in a web framework.

Register BDTs in the Web Framework
When an application needs to use a BDT, it calls the BDT controller and specifies the
name of the BDT it wants to use (such as Boolean). The BDT controller knows how to
locate and call the BDT conversion routine by registering the BDT class with the BDT
controller.

This allows the BDT controller to associate the name of a BDT with a BDT class. When
the BDT controller needs to call the conversion routine, it creates an instance of the
BDT class, gets a reference to the class’ IBDT interface, and finally calls the Convert
method.

Use one of the following techniques to register BDT classes with the BDT controller:

1 Register BDT classes using the Windows Registry

2 Explicitly register BDT classes

The following sections describe each of these options.

Method Description

Convert The BDT controller calls this method to perform a conversion. It
passes in a BDTConversion object that contains details about the
conversion to be performed.

SelfRegister In this method, the BDT class must tell the BDT controller the names
of the BDTs that it implements.
– 151 –

Construct Spectrum SDK Reference __
7

Register BDT Classes Using the Windows Registry

The first technique for registering a BDT class is to use the Windows Registry to list all
of the BDT classes installed on the PC. For the standard BDTs supplied with the web
framework, the following excerpt from the Registry shows how this is done:

HKEY_LOCAL_MACHINE
 Software
 Software AG
 Business Data Types
 Alpha
 ProgID = StandardBDTs6.BDTAlpha
 AlphaMultiline
 ProgID = StandardBDTs6.BDTAlphaMultiline
 Boolean
 ProgID = StandardBDTs6.BDTBoolean
 ...

Notice the names of the BDTs under the Business Data Types key. Each BDT key con-
tains a ProgID string value that tells the BDT controller the programmatic ID (progID)
of the class that implements the BDT conversion routine. Knowing the progID allows
the BDT controller to create an instance of the BDT class.

The following example shows how the BDT controller locates and calls the BDT con-
version routine for the Boolean BDT:

1 The BDT controller looks up the ProgID value under the Boolean key and finds the
name “StandardBDTs6.BDTBoolean”.

2 It uses the Visual Basic CreateObject function to create an instance of this class. By
using the facilities of COM, CreateObject loads the ActiveX DLL that implements the
BDT class (StandardBDTs6.dll) and creates an instance of the BDT class
(BDTBoolean).

3 The BDT controller calls the SelfRegister method in the IBDT interface implemented
by the BDT class. For example:

Private Sub IBDT_SelfRegister(BDT As BDTController)
 BDT.RegisterBDT "Boolean", Me
End Sub

The BDT class calls the BDT controller’s RegisterBDT method, passing in the name of
the BDT and an object reference to itself.

4 The RegisterBDT method in the BDT controller stores the BDT name and the object
reference in an internal table. The BDT controller uses this table as a cache to store
object references so it doesn’t have to create a new instance of the BDT class each time
the application uses the BDT.

5 The BDT controller now has a reference to an instance of the BDT class, and calls the
Convert method in the class’ IBDT interface.

The next time the application uses the Boolean BDT, the BDT controller looks at its in-
ternal table first and finds the BDT name and object reference. It can then call the
Convert method immediately without having to perform the previous steps.
– 152 –

__ Using Business Data Types (BDTs)
7

Placing BDT classes in an ActiveX DLL and using the Windows Registry to list them
has the following advantages:

• BDT classes can be shared by many applications. By implementing BDT classes in an
ActiveX DLL, they can be developed, tested, and enhanced separate from any
application.

• An application that needs to use BDTs does not have to explicitly register all of the
BDTs that it will use. The BDT controller simply locates and loads the BDT class con-
taining the conversion routine dynamically at runtime whenever it is needed.

• BDTs can be added to a PC by installing the ActiveX DLL that contains them and then
registering the new BDTs to the BDT controller by adding Registry keys under
HKEY_LOCAL_MACHINE\Software\Software AG\Business Data Types.

Explicitly Register BDT Classes

The second technique for registering a BDT class is to explicitly call the BDT control-
ler’s RegisterBDT method in your application’s startup code. For example:

Public Sub Main

 ...

 ' Register the BDTs used by the application.
 RegisterBDT "Phone", New BDTPhone
 RegisterBDT "ZipCode", New BDTZipCode
 RegisterBDT "UPC", New BDTUPC

 ...

 ' Show the application's main form.
 frmMain.Show

End Sub

In this example, the RegisterBDT method is called. For each BDT, the name of the BDT
and a reference to an instance of the BDT class that implements the BDT conversion
routine is passed. The BDT controller stores the BDT name and reference in its internal
table in a similar way as it does with the Windows Registry.

Because the BDT controller is a global, multi-use object, it can be invoked with its
properties and methods (such as RegisterBDT) as if they were global functions.

Explicitly registering BDT classes in your application has the following advantages:

• You can create private BDTs that are available only inside your application. They can
be developed, tested, and enhanced with your application.

• Extra keys do not need to be added to the Windows Registry to tell the BDT controller
about the BDTs.
– 153 –

Construct Spectrum SDK Reference __
7

BDT Conversion Object
In the Construct Spectrum web framework, BDT conversion routines reside inside BDT
classes. The following table describes the properties and methods of the BDT Conver-
sion object. In the examples used in the table, assume the following call was made:

strHours = ConvertToDisplay(dblHours, _
 "Numeric,ZERO=OFF,ROUND=2,STRICT=ON", _
 "N3.2")

Property or Method Description

Conversion Tells the conversion routine what type of conversion to
perform. Can be one of the following constants:

bdtConvertToDisplay
bdtConvertFromDisplay
bdtCreateSampleString

FormattedData and
RawData

Should be one of the following:
• When Conversion = bdtConvertFromDisplay, the

conversion routine reads the value in FormattedData,
converts it into a Visual Basic data type, and assigns the
new value to RawData.

• When Conversion = bdtConvertToDisplay, the
conversion routine reads the value in RawData, formats
it for display, and assigns the formatted string value to
FormattedData.

• When Conversion = bdtCreateSampleString, the
conversion routine assigns a sample string to
FormattedData. For example:

With BDTC
 Select Case .Conversion
 Case bdtConvertFromDisplay
 .RawData = cvtToRaw(.FormattedData)
 Case bdtConvertToDisplay
 .FormattedData = cvtToDisp(.RawData)
 Case bdtCreateSampleString
 .FormattedData = createSample()
 End Select
End With

Modifier.Count Returns the number of modifiers specified by the caller. In
the example, Modifier.Count returns 3.

Modifier Returns the value of a specific modifier or can be used to
enumerate the modifiers used. In the example:

With BDTC
 Print .Modifier("ZERO") ' Prints "OFF"
 Print .Modifier(1) ' Prints "ZERO"
 Print .Modifier(2) ' Prints"ROUND"
 Print .Modifier(.Modifier(1))' Prints "OFF"
End With
– 154 –

__ Using Business Data Types (BDTs)
7

Note: Modifier names, such as ZERO or ROUND, are passed to
the BDT conversion routine in uppercase. You do not have
to use case-sensitive string comparisons when checking
which modifiers were used.

FormatLength Returns the Natural format string used in the call. In the
example, FormatLength returns N3.2.

Format, Length, and
Decimals

Returns the format, length, and decimal portions,
respectively, of the Natural format string used in the call.
In the example, Format contains N, Length contains 3, and
Decimals contains 2.

BDTName Returns the name of the BDT from the call. In the example,
BDTName contains Numeric.

Note: BDT names are passed to the BDT conversion routine
with the capitalization used when the BDT was registered.
For example, if RegisterBDT was called to register the
BDT mIxEdCase, and then ConvertToDisplay was called
for the BDT MixedCase, BDTC.BDTName contains
mIxEdCase.

SetBDTString Changes the BDT name and modifiers in the
BDTConversion object.

ErrorCode, ErrorMsg,
ErrorPos, and ErrorLen

Contain error information. The conversion routine should
assign values to these properties if a conversion error
occurred.

Property or Method Description (continued)
– 155 –

Construct Spectrum SDK Reference __
7

Create the BDT Class
A different class module is usually used for each BDT. You can also group a set of re-
lated BDTs in a class module to share conversion routines or code. For example, a BDT
called PartNumber might be implemented by a class called BDTPartNumber. You can
name your class as desired.

The basic structure of a BDT class when implemented in Visual Basic is:

Option Explicit

Implements IBDT

Private Sub IBDT_Convert(BDTC As BDTConversion)

 Select Case BDTC.Conversion
 Case bdtConvertToDisplay
 BDTC.FormattedData = ...
 Case bdtConvertFromDisplay
 BDTC.RawData = ...
 Case bdtCreateSampleString
 BDTC.FormattedData = ...
 Case bdtCreateSortableString
 BDTC.FormattedData = ...
 End Select

End Sub

Private Sub IBDT_SelfRegister(BDT As BDTController)
 BDT.RegisterBDT "<BDT name>", Me
End Sub

The BDT conversion routine is implemented in the IBDT_Convert procedure. It uses
the properties of the BDTConversion object to determine what type of conversion to
perform (convert to display, convert from display, create sample string, or create sort-
able string), to get information about the modifiers used, the Natural format specified,
and to return the converted value.

You can examine the BDT classes in the StandardBDTs sample project to see how these
properties and methods are used in BDTs.
– 156 –

__ Using Business Data Types (BDTs)
7

Other BDT Controller Methods
To deregister one or more BDTs, call the DeregisterBDT method as follows:

DeregisterBDT ' Deregisters all BDTs.
DeregisterBDT Me ' Deregisters only the BDTs in the
 ' specified object.
DeregisterBDT Me, "Numeric" ' Deregisters only the Numeric BDT in
 ' the specified object.

Deregistering BDTs is useful if you need to release all references to an object so that
the object can be destroyed. The object can then be recreated and re-registered with all
the BDTs it implements.

If the conversion routine for a given BDT needs to be located, use the GetBDTRoutine
to return the object reference of the BDT class that implements the conversion routine.
The syntax is:

Sub GetBDTRoutine(ByVal BDTName As String, ByRef Handler As IBDT)

If the BDT name has not been registered, Handler contains Nothing on return.

Create a Natural-to-BDT Mapper
The BDT controller calls the Natural to BDT mapper function when the application
uses a conversion function and provides the Natural format, instead of the name of a
BDT. The mapper provides the most appropriate BDT to use for each Natural format.

A mapper function must be registered with the BDT controller as BDTs are registered.
Using the Windows Registry technique, use the following Registry key:

HKEY_LOCAL_MACHINE
 Software
 Software AG
 Business Data Types
 NaturalBDTMapper
 ProgID=StandardBDTs6.NaturalBDTMapper

You can also explicitly register the mapper function using the RegisterNaturalBDT-
Mapper function:

Public Sub Main

 ...

 RegisterNaturalBDTMapper New NaturalBDTMapper

 ...

 ' Show the application's main form.
 frmMain.Show

End Sub
– 157 –

Construct Spectrum SDK Reference __
7

This class must implement the IBDTMapper interface. The following example shows
how the mapper function is implemented in the StandardBDTs sample project:

Option Explicit

Implements IBDTMapper

Private Function IBDTMapper_NaturalBDTMapper(Format As String, _
 Length As Long, _
 Decimals As Integer) _
 As String

 Select Case Format
 Case "A"
 IBDTMapper_NaturalBDTMapper = "Alpha,TRIM=T"
 Case "B", "C"
 IBDTMapper_NaturalBDTMapper = "HexBytes"
 Case "D"
 IBDTMapper_NaturalBDTMapper = "Date"
 Case "F", "I", "N", "P"
 IBDTMapper_NaturalBDTMapper = "Numeric"
 Case "L"
 IBDTMapper_NaturalBDTMapper = "Boolean"
 Case "T"
 IBDTMapper_NaturalBDTMapper = "DateTime"
 End Select

End Function

The NaturalBDTMapper method must return the most appropriate BDT to use for the
given Natural format/length specified.

Once a mapper function has been registered, the GetBDT method of the BDT controller
returns the name of the BDT used for the Natural format. Using the previous mapper:

Print GetBDT("D") ' Prints "Date"
Print GetBDT("L") ' Prints "Boolean"
Print GetBDT("N6") ' Prints "Numeric"
– 158 –

__ Using Business Data Types (BDTs)
7

Create One BDT Class with Multiple BDTs
One BDT class can implement BDT conversion routines for multiple BDTs. For
example:

Private Sub IBDT_SelfRegister(BDT As BDTController)
 RegisterBDT "AccountNumber", Me
 RegisterBDT "DeptNumber", Me
 RegisterBDT "GroupNumber", Me
 RegisterBDT "FileNumber", Me
End Sub

When the application uses the BDT, the conversion routine checks the BDT name as
follows to determine what conversion to perform:

Public Sub IBDT_Convert(BDTC As BDTConversion)

 Select Case BDTC.BDTName
 Case "AccountNumber"
 Select Case BDTC.Conversion
 ...

 Case "DeptNumber", "GroupNumber"
 Select Case BDTC.Conversion
 ...

 Case "FileNumber"
 Select Case BDTC.Conversion
 ...

 End Select

End Sub
– 159 –

Construct Spectrum SDK Reference __
7

– 160 –

__
8

DEBUGGING YOUR CLIENT/SERVER
APPLICATION

This chapter describes how to debug client/server applications created using Construct
Spectrum.

The following topics are covered:

• Overview, page 162

• Types of Errors, page 165

• Generating Debug Data, page 167

• Running Spectrum Dispatch Services Online, page 174

• Using Natural Debugging Tools, page 175

• Debugging Tools on the Client and Server, page 177

• Troubleshooting, page 183

For related information, see:

• Construct Spectrum Messages for a list of each Construct Spectrum error with possible
causes and solutions.

• Natural documentation
Refer to the Natural documentation for information on the Natural Debugging facility.

• Microsoft Visual Basic Programmer’s Guide
Refer to the Debugging chapter for information on the debugging environment for Vi-
sual Basic applications, including the kinds of errors, different modes, and the
debugging tools available.
– 161 –

Construct Spectrum SDK Reference __
8

Overview
Client/server applications are more complex than traditional, single-platform applica-
tions. Multiple computers are connected together, requiring a communication layer that
opens the door for new types of errors. In client/server applications, errors can occur in
more than one place. Server components must be developed as callable routines without
a user interface. Data values have different internal representations on the client and on
the server. All of these distributed computing issues for client/server applications allow
more room for errors.

Because it is not always apparent where the errors occur, debugging client/server appli-
cations can be more difficult than debugging single-platform applications. Errors may
occur within the client software, the server software, the network layer, or a combina-
tion of these. To simplify the debugging process, the client framework provides tools
and procedures you can use to debug your applications.

Communication Errors
Communication errors occur during a remote call from the client application to the sub-
program. Each remote call involves many individual software components and data
files. Some software components run on the client, while others run on the server. With
so many components and different platforms involved in every call, the potential for er-
ror is greater than in non-client/server applications. A high-level list of the components
involved in a remote call includes:

• application service definitions

• client application

• EntireX Broker

• EntireX Broker stub

• Entire Net-Work

• library image files

• Spectrum Dispatch Client

• Spectrum dispatch service

• Spectrum security service

• subprogram proxy

• subprogram

Communication Error Handling
Because the client application initiates every remote call, it is also necessary to transfer
back to the client application any error that does occur. The client application takes cor-
rective action or it displays the error message to the user.
– 162 –

__ Debugging Your Client/Server Application
8

Error messages return to the client application in all but the most severe error situations.
The Spectrum Dispatch Client makes the error details available to the client application
through its error properties ErrorSource, ErrorNumber, ErrorMessage, and ErrorValue.
If DisplayErrors is set to True, the Spectrum Dispatch Client will also display the error
message in a message box.

Severe error situations that prevent the error message from being returned to the client
application include:

• An interruption in the Entire Net-Work communication between client and server.

• EntireX Broker ends.

• EntireX Broker times out during the subprogram execution.

• The subprogram or a Spectrum service ends the Spectrum dispatch service.

If a message cannot be returned to the client, it is written to the communication log.

For a complete list of communication errors and how to resolve them, see Construct
Spectrum Messages.

Traditional Debugging Tools
In Natural applications, logic errors are diagnosed using one of two techniques:

• Temporarily add WRITE, DISPLAY, or INPUT statements to show the contents of
variables and the execution sequence of the program logic.

• Use the Natural Debugging facility to step through the code and the variable contents.

When a client application invokes Natural services, these traditional debugging tools
are not available. Both of these traditional debugging techniques pause the execution of
the program for user input. However, because dispatch services run in batch mode by
default, no I/O statements are possible. Nevertheless, the Spectrum dispatch service
may have reported Natural runtime errors or unexpected values back to the client. Each
of these requires investigation.
– 163 –

Construct Spectrum SDK Reference __
8

Construct Spectrum Debugging Tools
The debugging tools supplied with Construct Spectrum allow you to:

• Save the data for client requests to a Natural library on the server. This data can then be
used to recreate the request on the server and run it online. You can then use all of the
traditional Natural debugging facilities to diagnose problems. For information, see
Generating Debug Data, page 167, and Using Natural Debugging Tools, page 175.

• Use output statements, including WRITE, PRINT, and DISPLAY, in your Natural sub-
programs to write data to the Natural source buffer and save the source buffer to a
Natural library. You can then examine this data after the call returns to the client. Use
this technique if you do not need to run client requests online. For information, see Gen-
erating Debug Data, page 167, and Using Natural Debugging Tools, page 175.

• Examine the data transmitted between the client and the server. For information, see
RequestProperty Property, page 186.

• Examine the data expected by a subprogram proxy. Use this feature if you suspect the
data formats used by the client and server components differ. For information, see Di-
agnostics Window, page 177.
– 164 –

__ Debugging Your Client/Server Application
8

Types of Errors
Errors that are returned by the Spectrum Dispatch Client (SDC) fall into two categories:
runtime errors and communication errors. A third category, Spectrum system messages,
are not returned to the SDC. These messages must be viewed in the Spectrum Admin-
istration subsystem.

While most errors can be fixed on the client, others must be fixed on the server. Con-
struct Spectrum provides methods that help you track the origin and reason for errors.
These methods allow you to determine what needs to be fixed and where the repair must
be made. The types of errors you will encounter while designing your Construct Spec-
trum client/server application are:

• Visual Basic runtime errors

• Communication errors

• Natural runtime errors

• Construct Spectrum-related errors

• Errors that do not return an error message

This chapter describes the Construct Spectrum tools and procedures to help debug these
last three types of errors: Natural runtime errors, Construct Spectrum-related errors, and
errors that do not return an error message.

Visual Basic Runtime Errors
Visual Basic runtime errors can be trapped by using the Visual Basic On Error state-
ment. These errors are the easiest to resolve because they occur in your Construct
Spectrum application in Visual Basic and allow you to use the Visual Basic-provided
debugging features to pinpoint the problem. Runtime errors are always caused by pro-
gramming errors in your code or by some problem related to the client environment,
such as a missing file.

Note: You also code business validations in your Visual Basic maintenance objects
to raise runtime errors when a validation fails. The Construct Spectrum client
framework traps these errors and displays them as pop-up messages attached
to a GUI control.

For more information about validating your data, see Validating Your Data, page 261,
Construct Spectrum SDK for Client/Server Applications. For a complete list of runtime
errors and how to resolve them, see Construct Spectrum Messages.
– 165 –

Construct Spectrum SDK Reference __
8

Communication Errors
Communication errors occur when there are problems establishing a connection to the
server. These errors are returned by the Spectrum Dispatch Client’s error properties. If
ErrorSource contains “ETB”, a communication error has occurred.

For more information, see Construct Spectrum Messages. Also refer to the EntireX Bro-
ker Error Reference documentation.

Natural Runtime Errors
Natural runtime errors may occur in your subprograms. These errors are always re-
turned to the client application by the Spectrum Dispatch Client. When the client
application uses the CallNat method of the Spectrum Dispatch Client’s dispatcher ob-
ject to call a remote subprogram and the CallNat is returned, check the dispatcher
object’s error properties. If ErrorSource contains “NAT”, a Natural runtime error has
occurred.

Construct Spectrum-Related Errors
These errors are returned by the Spectrum Dispatch Client. If ErrorSource contains
“SPE”, a Construct Spectrum-related error has occurred.

For more information, including a complete list of Construct Spectrum errors and how
to resolve them, see Construct Spectrum Messages.

Errors that Do Not Return an Error Message
These errors do not return an error message, but they can cause your program to behave
unexpectedly.
– 166 –

__ Debugging Your Client/Server Application
8

Generating Debug Data
Generating debug data is a service provided by the Spectrum dispatch service. The
Spectrum dispatch service automatically saves the source area contents to the Natural
system file. The source area’s contents are generated based on values found in the trace
options set on the client. Values assigned in your user record determine the location and
name of the stored debug data.

For information, see Specify Where to Save Debug Data, page 172.

Note: If you intend to use the Trace function, you must install Construct Spectrum
with printer 2 and 3 assigned to batch. For more information, see Construct
Spectrum and SDK Installation Guide for Mainframes.

Save Parameter and Debug Data
For each request handled by the Spectrum dispatch service, it is possible to save the pa-
rameters passed in or out of the subprogram proxy. These parameter values are saved
to a text member within the Natural System file. It is also possible to save data that the
application code generates into the source area.

The Spectrum Dispatch Client and Spectrum dispatch server support a trace option that
determines how much debug data is saved during a remote CallNat. The trace option is
set on the client before issuing the CallNat method. The Spectrum dispatch server then
examines the trace option during the CallNat to determine how much data to save.

Set Trace Options
� To set a trace option:

1 Place a break point in the Visual Basic code just before the Dispatcher.CallNat method
as follows:

– For a maintenance dialog, in the InvokeRemoteMethod function of the Visual Basic
maintenance object.

– For a browse dialog, in the CallDBLayer function of the BrowseBase class.

2 Enter “SetTraceOptions Dispatcher” in the Visual Basic Debug window, where
Dispatcher is the reference variable of a Dispatcher object.
The Trace Options window is displayed:
– 167 –

Construct Spectrum SDK Reference __
8

Remote Dispatch Server Trace Options Window

3 Use this window to set trace option 1 or 2.

The following sections describe each of these options.

Trace Option(1)
Trace Option(1) controls how you save data to the Natural system file.

Trace Option(1) causes the Spectrum dispatch service to issue an END TRANSAC-
TION command. As a result of the END TRANSACTION, the current data is saved to
the debug file.

You can assign Trace Option(1) one of the following values:

Value Result

0 No tracing. Nothing is written to the Natural system file.

1 Spectrum dispatch service saves only data received from the client and sent
to the subprogram proxy and writes it to the system file.

2 Spectrum dispatch service saves only data received from the subprogram
proxy and returned to the client and writes it to the system file.

3 Spectrum dispatch service saves both the data received from and the data
returned to the client.
– 168 –

__ Debugging Your Client/Server Application
8

Note: When using trace option(1) = 3 and a subprogram that clears the source area
is called, data received from the client is lost. Only data transmitted to the cli-
ent is saved. In this case, use value 1 to save data received from the client.

If a subprogram writes data to a source area, it is then saved by the dispatcher. To write
to the source area, the application subprograms must contain a printer definition, such
as DEFINE PRINTER (DEBUG=1) OUTPUT ‘SOURCE’. The subprogram can then write out
debug data using Natural DISPLAY, WRITE, and PRINT statements.

By default, all generated subprogram proxies contain a printer definition allowing de-
bug data to be written to the source area. This eliminates the need for you to place this
code in the generated proxy if you need to allow generation of application debug data
from inside the generated proxy routine.

To write debug data to the source area, you will write code to the beginning of the mod-
ule that will write the debug data (the START-OF-PROGRAM user exit if using
Construct-generated code). To view a sample of this default and tailored code, see Cre-
ate Debug Data, page 170.

For more information about the subprogram proxy, see Using the Subprogram-Proxy
Model, page 103.

4 Server saves data only when a Natural runtime error occurs in the server
application. The data saved will be the contents of the subprogram proxy
parameters at the time the error occurred. These values may differ from the
values sent to the subprogram proxy.

5 Any data that the subprogram proxy or the subprogram writes to the
Natural source area is saved.

Value Result (continued)
– 169 –

Construct Spectrum SDK Reference __
8

Create Debug Data

The following example shows code samples of how to include debug information in
your applications and code samples of what you might see returned.

IF *LEVEL EQ 1 THEN
 DEFINE PRINTER(DEBUG=1) OUTPUT 'SOURCE'
END-IF
FORMAT(DEBUG) PS=0 LS=250 SG=OFF ZP=OFF AD=Z

To create better, more readable debug information, the DEFINE PRINTER statement
should be bounded by an IF condition that does not execute in application subprograms.
The DEFINE PRINTER statement is still required in each module that is expected to
perform WRITE statements in the source area. However, based on the IF statement, the
code is never executed; it only exists to allow for the definition of a logical printer name
for the debugging target. By disallowing execution of the DEFINE PRINTER statement
in application code, the print queue remains open across all subprograms using it. Each
DEFINE PRINTER closes the print queue. While no information is lost, a new page
header is forced each time, causing less readable debug data to be produced.

Example of debug code in a series of subprograms

Subprogram 1 (SUBP1)
WRITE *PROGRAM

Subprogram 2 (SUBP2)
WRITE *PROGRAM

Subprogram 3 (SUBP3)
WRITE *PROGRAM

Subprogram 4 (SUBP4)
WRITE *PROGRAM

Results when debugging using the IF statement

SUBP1
SUBP2
SUBP3
SUBP4
– 170 –

__ Debugging Your Client/Server Application
8

Results when debugging without using the IF statement

*/
Page 1

SUBP1
*/
Page 1

SUBP2
*/
Page 1

SUBP3
*/
Page 1

SUBP4

Use any output statement to generate information into the source area:

WRITE (DEBUG) NOTITLE ‘Prompt 1:’ #VAR1

or

PRINT (DEBUG) NOTITLE ‘Prompt 2:’ #VAR2

or

DISPLAY (DEBUG) NOTITLE ‘Prompt 3:’ #VAR3

Note: The Natural subprograms called from the client execute in batch Natural pro-
cesses. The output will go to the printer or terminal unless you redirect the out-
put to the source area using the DEFINE PRINTER statement.

For more information about using the debug data saved with Trace Option(1), see Using
Natural Debugging Tools, page 175.
– 171 –

Construct Spectrum SDK Reference __
8

Trace Option(2)
This option controls how the generated subprogram proxies handle runtime errors. It
works in conjunction with the Generate Trace Code field of the subprogram proxy spec-
ification. It is used to help uncover the cause of data format and data length
incompatibilities between the client and the server.

You can assign Trace Option(2) one of the following values:

Tip: Using Trace Option(2)=0 while running a Spectrum dispatch service online can
be an effective way of determining runtime problems.

Specify Where to Save Debug Data
Settings in your user record determine where debug information is stored and how file
names are determined. User records are maintained in the Spectrum Administration
subsystem.

For more information on the Spectrum Administration subsystem, see Overview of the
Spectrum Administration Subsystem, page 19, Construct Spectrum Administration.

For more information about user records, see Defining Groups Using Natural Secu-
rity, page 80, and Defining Users Using Spectrum Security, page 83, Construct
Spectrum Administration.

Value Result

0 All errors occurring within the subprogram proxy are handled as normal
Natural runtime errors. As a result, control does not return to the Spectrum
dispatch service and the current Error Transaction is invoked. The default
error transaction returns a message to the client and restarts the Spectrum
dispatch service.

1 Format conversion errors are trapped in an ON ERROR block of the
generated subprogram proxy. A Natural runtime error does not occur for
these errors, so the Spectrum dispatch service resumes control after the ON
ERROR processing. If this option is used in conjunction with the Generate
Trace Code parameter of the subprogram proxy, the field name and data
values that triggered the error are returned to the Spectrum dispatch service
and transferred to the client.
– 172 –

__ Debugging Your Client/Server Application
8

Access the Maintain User Table Panel

� To access the Maintain User Table panel:

1 Enter “SA” in the Function field on the Construct Spectrum Administration Subsystem
main menu.
The System Administration main menu is displayed.

2 Enter “MM” in the Function field on the System Administration main menu.
The System Administration Maintenance menu is displayed.

3 Enter “US” in the Function field on the System Administration Maintenance menu.
The Maintain User Table panel is displayed:

Maintain User Table Panel

Debug Library is the name of the Natural library where the debug file is saved. If no
library is specified or if user information is provided by Natural security, the library
name defaults to the current user ID. Debug Filename can be:

To view the generated debug members, use the Natural EDIT or LIST command.

BSUS__MP Construct Spectrum Administration Subsystem BSUS__11
Apr 14 Maintain User Table 1:45 PM

 Action (A,B,C,D,M,N,P) _
 User ID.................: SYSTEM__
 Password................:

 Name....................: DEFAULT SYSTEM USER (NO PASSWORD)____________

 Debug Library...........: SYSSPEC_
 Debug Filename..........: U ('T'imestamp; 'U'ser ID)

 Preferred Language......: 01

 Groups..................: SYSTEM_ ________ *
 ________ ________
 ________ ________
 ________ ________
 ________ ________
Direct Command: __
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
confm help retrn quit flip pref main flip pref
main
 User flip pref main
 User SYSTEM displayed successfully

Value Result

T File name is determined by concatenating “T” with the current time value.

U File name is the same as the current user ID.
– 173 –

Construct Spectrum SDK Reference __
8

Running Spectrum Dispatch Services Online
Instead of using trace option (1) with assigned value 5 (which writes to the source area),
you can use a Natural session to initiate the service online. Initiating a dispatch service
from a Natural session allows I/O to the terminal. This method is similar to the debug-
ging method discussed in Debugging Tools on the Client and Server, page 177, but
the Natural session running the dispatch service cannot perform any other tasks.

This type of dispatch Service stays active and locks control of your online Natural ses-
sion until you send it a shutdown request or until it times out because of server non-
activity.

� To start a server online:

1 Invoke Natural using the SYSSPEC profile.

2 Enter the following command at the Next prompt in the SYSSPEC library:

‘START servicename’

Note: You can also specify the Natural startup parameters in a Natural profile. For
more information, see the Construct Spectrum and SDK Installation Guide for
Mainframes.

Use the INPUT Statement as a Debugging Tool
If you decide to run the dispatch service online, use the INPUT statement for debug-
ging. The INPUT statement allows you to interrupt and restart the execution of code.
Use these interruptions to generate a printed copy of the INPUT statement or to copy
the INPUT statement to the source area with a %C command.

If application tracing is set (trace option 1 = 5), the dispatch service writes the inputs
copied to the source area into the designated debug source member.

Tip: To guarantee that others using the same services do not generate terminal I/O
when running the service online, bound your debug statements with IF *USER =
‘youruserID’ THEN and END-IF. As long as ‘youruserID’ is set to the *USER
of the session in which the dispatch service has been initiated online, only your
online dispatch service generates messages to the terminal.

Tip: When running a server online, you can shut it down using the Broker console
shutdown command. It is best to use a unique server class/server name/service to
ensure that you do not shut down another server inadvertently.
– 174 –

__ Debugging Your Client/Server Application
8

Using Natural Debugging Tools
Debugging client/server applications can be difficult because of their distributed nature.
To make the debugging process easier, Construct Spectrum includes an invoke subpro-
gram proxy function that simulates client calls. Using this function lets you reproduce
problems like runtime errors without the added complexity of communication between
the client and server.

To help you use Natural to simulate client calls, the client component of generated ap-
plications can tell the server application component that data being transmitted must be
saved on the server. Using this server-based data to drive the server component allows
you access to Natural debugging techniques, such as embedded INPUT or WRITE
statements. In addition, by executing the server component locally on the server ma-
chine, you can use the Natural Debugging Facility.

For more information, see Generating Debug Data, page 167.

For information on using the Natural Debugging facility, see the Natural Utilities
documentation.

Invoke Subprogram Proxies Online
Once the debug data exists on the server, use the Invoke Proxy function in the Construct
Spectrum Administration subsystem to invoke the same subprogram proxy that the cli-
ent attempted to call. The function uses the debug data to perform the function the client
originally requested. Once execution of the target proxy begins, one of two things can
happen:

If you added debug code to the target proxy and subprogram, the system is able to
present the terminal output of these statements.

If the problem is not a runtime error, use the Natural Debugging facility to place break
and watch points in the target code. You can monitor these points using the Invoke
Proxy function to examine variable contents and line-by-line execution.

Result Response

A runtime error occurs The system traps this error and presents it as a message on
the Invoke Proxy panel.

No runtime error occurs The Invoke Proxy panel displays a message indicating that
execution of the proxy completed successfully.
– 175 –

Construct Spectrum SDK Reference __
8

Access the Invoke Proxy Function
The Invoke Proxy function is one of the options accessible through the Application Ad-
ministration main menu. For a description of how to access the Construct Spectrum
Administration subsystem, see Invoking the Spectrum Administration Subsystem,
page 31, Construct Spectrum Administration.

� To access the Invoke Proxy function:

1 Enter “AA” in the Function field on the Construct Spectrum Administration Subsystem
main menu.
The Application Administration main menu is displayed.

2 Enter “IP” in the Function field on the System Administration main menu.
The Invoke Proxy panel is displayed:

Invoke Proxy Panel

Using this panel, you can activate the Natural Debugging facility or put trace statements
(INPUT, WRITE, DISPLAY, or PRINT) in the Natural server modules to help diag-
nose the error.

By default, the system uses the FUSER or FNAT defined for the session when retriev-
ing the debug data, depending on the library name. To use an alternate FUSER or
FNAT, specify the values in the DBID and FNR fields.

Tip: Manually change the data in the debug member to generate a runtime error. Use
this test either to ensure that runtime situations can be handled properly by the
system or to force execution of code that occurs only in the case of runtime errors.

BSSIDBGP Construct Spectrum Administration Subsystem BSSIDBG1
 May 08 Invoke Proxy 09:03 AM

 Debug Library: DEVDG___
 Member : DEVJM___
 DBID : ___
 FNR : ___

 Direct Command: __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit flip main
– 176 –

__ Debugging Your Client/Server Application
8

Debugging Tools on the Client and Server
The following sections describe debugging tools you can use on the client and tools you
can use on the server.

Diagnostics Window
Application developers use the Diagnostics window during application development to
diagnose parameter alignment problems between the client and server.

When invoking remote Natural subprograms from a client application, the parameters
must match in both size and format on both sides of the call. The Diagnostics window
obtains information about the remote subprogram. By examining the Dispatcher.Re-
questProperty array after invoking Dispatcher.CallNat, the Spectrum Dispatch Client
can give you information about the local call.

The following table summarizes the information:

Returned by Diagnostics Program Equivalent SDC Property

Number of level 1 blocks in the
parameter data of the subprogram.

Dispatcher.RequestProperty _
(“Request.DataAreas”)

Name of each block (corresponds to
the level 1 field or structure name).

Dispatcher.RequestProperty _
(“Request.DataArea(2)”).Name

Expanded size of data in each block. Dispatcher.RequestProperty _
(“Request.DataArea(2)”)._
PackedDataLength

Total size of the parameter data. Not applicable.

Image of the initialized parameter data. Dispatcher.RequestProperty _
(“Request.DataArea(2)”)._
PackedData
– 177 –

Construct Spectrum SDK Reference __
8

The following example shows the Diagnostics window:

Diagnostics Window, Subprogram Proxy Tab

Use this window to simulate a CallNat by providing all the Spectrum dispatch service
parameters necessary to do the CallNat.

� To use the Diagnostics window:

1 Enter your user ID and password.
These values are required for all remote requests.

2 Enter the domain name, object name, version number, and method name to identify the
subprogram you want to call.
You can obtain this information from the Construct Spectrum Administration
subsystem or from the library image file (LIF) for your application.

3 Click Get Diagnostics Data to submit the request.
If the request is successful, the Data Sizes tab shows information about the level 1
blocks and the Initialize Data tab shows an image of the initialized parameter data.
– 178 –

__ Debugging Your Client/Server Application
8

The following examples show the tabs for the DEMO/CUSTOMER/1.1.1/GET request:

Diagnostics Window, Data Sizes Tab
– 179 –

Construct Spectrum SDK Reference __
8

Diagnostics Window, Initialize Data Tab

The Initialize Data tab shows the expanded version of the parameter data. If you high-
light a portion of text, the position and length of the highlighted section are shown at
the bottom of the window. You can use this information to help determine parameter
alignment problems. In the example above, notice the first line of text on the right side
of the window that reads “+0000000000”. If you know something about the format of
the parameter data, you can infer that this value represents the PHONE-NUMBER field,
an N10 field, in the Customer object. You can then compare the format of this data to
the data sent to the server.
– 180 –

__ Debugging Your Client/Server Application
8

Translations Program
Construct Spectrum uses its own ASCII/EBCDIC translation tables to convert data
when the client and server use different character sets. In most cases, you do not need
to know anything about these tables. However, when your subprograms send or receive
non-printable characters in alpha fields (format A), you may want to know what the
translation tables do with those characters.

The Translations program shows you exactly how each byte value is translated from
one character set to the other. The translation tables group the 256 characters in each
character set into three sets:

The Translations program uses colors to identify these three sets of characters. The fol-
lowing example shows the Translation Mappings window in shades of gray:

Set Description

Printable characters Characters exist in both character sets; there is a well-defined
mapping from one character set to the other.

Preserved characters Characters have no corresponding character in the other
character set and their byte values are the same in both
character sets. For example, character 0 in ASCII is also
character 0 in EBCDIC, and 255 is 255.

Altered characters Characters have no corresponding characters in the other
character set and their byte values are different in both
character sets because the byte value is already being used by
a printable character in one of the sets.
– 181 –

Construct Spectrum SDK Reference __
8

Translation Mappings Window
– 182 –

__ Debugging Your Client/Server Application
8

Troubleshooting
This section provides quick access to the most common components you can check
when troubleshooting.

Registry Usage
The default framework stores preferences under the following Windows registry key:

HKEY_CURRENT_USER
 Software
 Software AG
 CST Frameworks

The name of this key is set in the AppSettings.bas module. It can be changed to any oth-
er key in HKEY_CURRENT_USER.

Other framework components store application preferences in subkeys of this key:

The following SDC preferences are stored as values under the main registry key:

SDC.ini
The SDC.ini file stores Spectrum service definitions on the client. It is located in the
Windows directory. To edit the SDC.ini, use the Spectrum Service Manager.

Tip: The order of the Spectrum service definitions in this file is irrelevant.

Component Sub-Key Constant in CSTObjectConstants.bas

Browse BrowseObjects BROWSE_SUBKEY

Maintenance
preferences

MaintPreferences MAINTENANCE_SUBKEY

Value Name Description

DispatchService Name of the dispatch service to use. This dispatch service
name is one of the names in SDC.ini.

UserID User ID to use in calls to the dispatch service.
– 183 –

Construct Spectrum SDK Reference __
8

SDCApp.ini
In the Windows directory, you can use this file to specify which dispatcher to use if
there is no DispatchService entry in the registry. This functionality is not generally used
because the network error window lets you select a dispatch definition interactively.
The syntax is:

[SDC]
DefaultDispatcher=<name from SDC.ini>

In the project directory, you can use this file to override the default LIF directory (which
is the directory where the project is stored). The syntax is:

[SDC]
LibraryPath=<full pathname of a LIF directory>

Check for Necessary DLLs
The Ping function of the Spectrum Service Manager is the best tool to use to check that
DLLs required by Spectrum are installed and are in the path. Pinging checks for the fol-
lowing DLLs (in this order):

• BROKERVB.DLL (from ETB\BIN)

• CDED32.DLL (from Windows\System)

Construct Spectrum Add-In
The Construct Spectrum Add-In always uses the following registry key for the SDC
preferences:

HKEY_CURRENT_USER
 Software
 Software AG
 Construct Spectrum Add-In

When you download or upload files, the Construct Spectrum Add-In uses a default li-
brary name, DBID, and FNR. It reads these from AppSettings.bas whenever you open
a new project or use the Construct Spectrum Add-In for the first time in a Visual Basic
session.

If you change these settings in AppSettings.bas, save the project and then restart Visual
Basic to have the Construct Spectrum Add-In re-read these settings.

Visual Basic knows about the Construct Spectrum Add-In because of the following
lines in Windows\VBADDIN.INI:

[Add-Ins32]
ConstructAddIn5.Connector=1
– 184 –

__ Debugging Your Client/Server Application
8

Useful SDC Properties
The SDC has many properties you can check when you get an SDC runtime error or a
communication error. Use the Visual Basic Debug Immediate function to examine
these properties. Some of these are displayed in the Network Error window.

Application Object

NaturalDataArea Object

Property Description

LIFDirectory Directory where the SDC looks for LIF files. Defaults to
project directory (or when running an EXE, where the EXE is
located). May be overridden with the SDCApp.ini file in the
same directory.

MainLibrary Name of the main LIF file. Set in AppSettings.bas, with the
DefaultLibrary variable.

UserID User ID to use in calls to the dispatch service.

Property Description

LibraryImageFile Name of the LIF file from which the data area definition was
loaded.

Definition Data area definition as read from the LIF file.

PackedData Wire-buffer representation of the field values in the data area.

PackedDataLength Size of the wire buffer representation (in characters).

Name Name of the data area. The name may contain other
components if this data area was created by using the FieldRef
method of another NaturalDataArea object, or if the data area
contains 1:V fields.
– 185 –

Construct Spectrum SDK Reference __
8

Dispatcher Object

RequestProperty Property
The SDCLib.Dispatcher object has a property called RequestProperty that returns in-
formation gathered during the last CallNat. The syntax for this property is:

RequestProperty(PropertyName As String) As Variant

The following property names are defined (the last column indicates whether this prop-
erty is shown in the Network Error window):

Property Description

ErrorSource One of ETB, NAT, or SPE.

ErrorNumber Error number, formatted according to the error source.

ErrorMessage Error message.

ErrorValue(i) Substitution parameter for the message.

Value Name Data Type Description X

Request.AppService String Name of the application service
definition (CUSTOMER, for
example). This is the first
parameter of the CallNat
method. The application service
definition is looked up in the LIF
files.

X

Request.DataAreas Integer Number of Natural data area
parameters passed into the
CallNat method.

X

Request.DataArea(i) Natural data
area

1 <= i <= Request.DataAreas.
Returns a reference to a
NaturalDataArea object passed
to the CallNat method.

X

Request.BlocksOut String Block header and data blocks (in
wire-buffer format) passed to the
subprogram proxy.

Request.BlocksIn String Blocks header and data blocks
(in wire buffer format) received
from the subprogram proxy.
– 186 –

__ Debugging Your Client/Server Application
8

Request.Domain String Domain name read from the
application service definition.

X

Request.Object String Object name read from the
application service definition.

X

Request.Version Long Version number read from the
application service definition.

X

Request.Method String Method name specified in the
CallNat (or DEFAULT if not
specified). The number of
blocks and the blocks to send
are looked up in the application
service definition.

X

Request.InsideTransaction Boolean True if StartTransaction was
called. All requests are sent to a
dedicated dispatcher.

X

Request.DataOut Byte Array Full dispatcher request, starting
with the request protocol bytes
and the format byte.

Request.RawDataIn Byte Array Binary response data received
from the dispatcher, after all
packets are assembled. Starts
with the response protocol bytes
and format byte.

Request.DataIn Byte Array Dispatcher response message,
after decryption, expansion,
and translation to ASCII.
Starts with the 4-digit
dispatcher message number.

Request.ReceivedData String Request.Data converted to a
string with the
StrConv(Request.DataIn,
vbUnicode) function. If the
dispatcher message number is
“0000”, contains the same as
Request.BlocksIn.

Packet.CountOut Integer Number of packets sent to the
dispatcher.

Value Name (continued) Data Type Description X
– 187 –

Construct Spectrum SDK Reference __
8

Packet.DataOut(i) Byte Array (i) can be from 1 to
Packet.CountOut. The bytes sent
for packet i.

Packet.CountIn Integer Number of packets received.

Packet.DataIn(i) Byte Array (i) can be from 1 to
Packet.CountIn. The bytes
received for packet i.

ETB.ConversationsID String Broker control block values for
the last Broker call.

ETB.Token String Generated to be unique.

ETB.UserID String Always “SPECTRUM-
DISPATCH-CLIENT”.

Value Name (continued) Data Type Description X
– 188 –

__
9

DEPLOYING YOUR CLIENT/SERVER
APPLICATION

Once a Construct Spectrum project is developed and tested, the new application can be
copied and installed on as many client machines as required. This chapter provides an
overview of this procedure, as well as different considerations to keep in mind when
deploying your client/server application.

The following topics are covered:

• Transferring Data, page 190

• Distributing Your Application, page 191

For related information, see Deploying the Administration Subsystem, page 125,
Construct Spectrum Administration.
– 189 –

Construct Spectrum SDK Reference __
9

Transferring Data
Your test and development files may differ from your production environment. Before
deploying your application, copy the definitions from your test or development file on
the mainframe to your production environment. To copy the file, either:

• Use the supplied data transfer utilities.

or

• Use the Construct Spectrum Administration subsystem to copy them manually.

Data Transfer Utilities
To copy definitions quickly, use the data transfer utilities. You can use these utilities to
copy domains and groups between one Spectrum system file and another.

For more information, see Data Transfer Utilities, page 135, Construct Spectrum
Administration.

Construct Spectrum Administration Subsystem
If desired, you can manually define and maintain the domain, application service defi-
nitions, and steplib information in the Construct Spectrum Administration subsystem.

For information about identifying where your application libraries reside on the server,
see Step 1: Define the Steplib Chain, page 43.

For information on grouping application objects and services, see Step 2: Define the
Domain, page 45.

For information on defining the domain, business object, and version of a Visual Basic
business object, see Access the Application Service Definitions, page 112.
– 190 –

___ Deploying Your Client/Server Application
9

Distributing Your Application
� To distribute your application:

� Step 1: Create the Executable File, page 191

� Step 2: Collect Files For Installation, page 191

� Step 3: Install the Client Application, page 192

� Step 4: Run the Application, page 192

The following sections describe each of these steps in detail.

Step 1: Create the Executable File
The first step is to create the file to execute the application.

� To create the executable file:

1 Open Visual Basic.

2 Select Make EXE File from the File menu.

Step 2: Collect Files For Installation
Next, collect the following files for installation on the target PC:

• The executable file created in the previous step.

• All runtime support files required by the executable file.

• The library image files (installed in the same directory as the executable file).

• Any resource files your application accesses from Resource class for the client frame-
work and any sound files used by validation errors.

• Any other data files used by your Construct Spectrum application.

Note: If the target PC has the Visual Basic runtime support files installed, you need
only copy the executable and the library image files to the target PC.

The procedure to ready your files for installation differs depending on whether you are
creating an installation tape, installing from disk, or using a server to copy files to the
target PC.

To create a professional setup program for your application, use the Package and De-
ployment wizard in Visual Basic or another setup toolkit. These programs ensure that
all required support files are included with your setup program. As with any external
data file used by the application, you must add the library image files to your setup pro-
gram manually.
– 191 –

Construct Spectrum SDK Reference __
9

Warning:
The Package and Deployment wizard detects that your client application uses the Spec-
trum Dispatch Client (SDC) and lists it as one of your application support files. Because
the SDC is installed separately on the target PC, you must remove the check mark from
the SDC in the list so it is not included with your setup program.

Step 3: Install the Client Application
Once you have a set of distribution files, you can install the client application on the
target PC. This procedure differs depending on whether you are creating an installation
tape, installation disks, or using a server to copy your files to the target PC. It also dif-
fers depending on which setup toolkit was used to create your setup program.

There are no prerequisites for installing the client application.

Step 4: Run the Application
Before running the client application, ensure:

• The Spectrum Dispatch Client is installed on the target PC.

• That either Entire Net-Work is installed and configured to access Entire Broker or En-
tire Broker is configured to use TCP/IP.

You can now run your newly installed application on the target PC. If installation was
successful, your application behaves identically to your tested application in your de-
velopment environment.

If an error message is displayed, see Debugging Your Client/Server Application,
page 161, for possible causes.

Note: While all error messages are displayed on the client, some conditions can be
remedied only by a system administrator on the mainframe.
– 192 –

__
10
USING THE SPECTRUM DISPATCH CLIENT

This chapter describes the Spectrum Dispatch Client (SDC), a key component of Con-
struct Spectrum development. The SDC allows you to make calls from a client to
Natural subprograms running on a server.

The following topics are covered:

• Overview, page 194

• Calling a Natural Subprogram, page 195

• Spectrum Dispatch Client Components, page 197

• Advanced Features, page 228

For related information, see:

• Creating Applications Without the Framework, page 235
This chapter describes the process of creating applications using Construct Spectrum
without using the client framework.
– 193 –

Construct Spectrum SDK Reference __
10
Overview
The SDC gives application developers the ability to make calls from a client to Natural
subprograms running on a server. The following examples show a parameter data area
and code for a Natural subprogram.

Example of the parameter data area for the CUSTN Natural subprogram

DEFINE DATA
 PARAMETER USING NCUSTPDA
 PARAMETER USING NCUSTPDR
 PARAMETER USING CDAOBJ
 PARAMETER USING CDPDA-M
 ...
END-DEFINE

Example of Natural code to call CUSTN

DEFINE DATA
 LOCAL USING NCUSTPDA
 LOCAL USING NCUSTPDR
 LOCAL USING CDAOBJ
 LOCAL USING CDPDA-M
END-DEFINE
*
ASSIGN NCUSTPDA.CUSTOMER-NUMBER = 10001
ASSIGN CDAOBJ.#FUNCTION = 'GET'
CALLNAT 'CUSTN' NCUSTPDA NCUSTPDR CDAOBJ CDPDA-M
...
END

Using the SDC, you can write similar Visual Basic code that declares these Natural data
areas, assigns values to the fields in the data areas, performs a CALLNAT, and then ex-
amines the data areas to determine the results.

Note: The examples presented throughout this chapter use Visual Basic as a model
for creating applications. You may choose to use another OLE-compliant pro-
gramming tool with Construct Spectrum.
– 194 –

__ Using the Spectrum Dispatch Client
10
Calling a Natural Subprogram
� To call a Natural subprogram from the client:

� Step 1: Create Parameter Data Area Instances, page 195

� Step 2: Assign Values to the Fields, page 195

� Step 3: Use the CallNat Method on the Client, page 196

� Step 4: Check the Success of the CALLNAT , page 196

The following sections describe these steps in detail.

Step 1: Create Parameter Data Area Instances
� To create the PDA instances:

1 Declare the variables for the Natural data areas expected by your subprogram.
For example:

Dim ncustpda As NaturalDataArea
Dim ncustpdr As NaturalDataArea
Dim cdaobj As NaturalDataArea
Dim cdpda_m As NaturalDataArea

In this example, the variable names are similar to the names of the external PDAs. For
CDPDA-M, the dash character was changed to an underscore because the dash is not
valid in a Visual Basic variable name.

2 Associate the name of the Natural data area with each variable.
To do this, call a routine that creates an instance of a Natural data area. For example:

Set ncustpda = SDCApp.Allocate("NCUSTPDA")
Set ncustpdr = SDCApp.Allocate("NCUSTPDR")
Set cdaobj = SDCApp.Allocate("CDAOBJ")
Set cdpda_m = SDCApp.Allocate("CDPDA-M")

This example calls the Allocate method of the SDCApp object (described later in the
chapter).

Step 2: Assign Values to the Fields
This step sets up the input parameters for the call. To assign values to the fields in the
PDAs, read and write the fields in the data areas.

The following example writes one field in each of the NCSTPDA and CDAOBJ data
areas:

ncustpda.Field("CUSTOMER-NUMBER") = 10001
cdaobj.Field("#FUNCTION") = "GET"

In this example, the NaturalDataArea object’s Field property reads and writes the fields.
– 195 –

Construct Spectrum SDK Reference __
10
Step 3: Use the CallNat Method on the Client
This step uses the CallNat method to call a remote subprogram. The following example
uses a communications object called Dispatcher:

Dispatcher.CallNat "CUSTN", ncustpda, ncustpdr, cdaobj, cdpda_m

The syntax of the CallNat method on the Dispatcher resembles a CALLNAT in a Nat-
ural program.

Step 4: Check the Success of the CALLNAT
Because this CALLNAT occurs between two machines over a network, an error may
occur. To confirm the success of the CALLNAT, examine the error properties for the
Dispatcher object. The Successful property is True if the CALLNAT succeeded. If the
Successful property is False, check the ErrorNumber, ErrorSource, and ErrorMessage
properties to find out what went wrong.

The following example checks the success of the CALLNAT:

If Dispatcher.Successful Then
 ' The call was successful. Read the fields in the data areas.
 ...
Else
 MsgBox "An error occurred." & _
 " Number = " & Dispatcher.ErrorNumber & _
 " Source = " & Dispatcher.ErrorSource & _
 " Message = " & Dispatcher.ErrorMessage
End If

Summary
The previous examples illustrate the process of calling Natural subprograms from the
client. There are many other details you must first specify before this example can run
successfully. These include defining the Natural data areas (see Step 1), locating and
invoking the Natural subprogram (see Step 3), and initializing the SDCApp and Dis-
patcher objects. These steps are described later in this chapter.

where:

CUSTN Is the name of the Natural subprogram to call.

ncustpda
ncustpdr
cdaobj
cdpda_m

Are the names of the data areas passed into the subprogram.
– 196 –

__ Using the Spectrum Dispatch Client
10
Spectrum Dispatch Client Components
The SDC provides the following key functions:

• Natural data area simulation

• Client/server communication

The following components provide Natural data area simulation:

The following components provide client/server communication:

For more information, see Construct Spectrum Messages.

The following sections provide more details about each of these components.

Component Description

Data area definitions Define fields in the Natural data areas used by your client
applications.

Data area allocator Reads data area definitions and creates data area objects.

Data area objects Provide properties and methods to read and write Natural data
areas for your client application.

Component Description

Application service
definitions

Define the Natural subprograms called by your client
application.

Dispatch service
definitions

Define the parameters required to communicate with the
Spectrum dispatch service.

Dispatcher objects Provide properties and methods to interact with the Spectrum
dispatch service.
– 197 –

Construct Spectrum SDK Reference __
10
Natural Data Area Simulation
When a client application calls a Natural subprogram, it uses parameter data areas
(PDAs) to pass parameters to the subprogram and receive parameters from the subpro-
gram. Using Construct Spectrum, you can simulate Natural data areas in Visual Basic.

The SDC components that provide this capability are the data area definitions, the data
area allocator, and the data area objects:

Components Used to Simulate Natural Data Areas

Data Area Definitions
Data area definitions use the same syntax as an inline data area in Natural code. These
definitions are stored in library image files.

For information, see Library Image Files and the Steplib Chain, page 227.

Data Area
Allocator

Definitions are read by the Data Area Allocator

The Data Area Allocator creates instances of data area objects

Data Area
Objects

Data Area
Definitions
– 198 –

__ Using the Spectrum Dispatch Client
10
Example of the NCUSTPDA data area definition

[DataArea NCUSTPDA]
01 CUSTOMER
 02 CUSTOMER-NUMBER (N5)
 02 BUSINESS-NAME (A30)
 02 PHONE-NUMBER (N10)
 02 MAILING-ADDRESS
 03 M-STREET (A25)
 03 M-CITY (A20)
 03 M-PROVINCE (A20)
 03 M-POSTAL-CODE (A6)
 02 SHIPPING-ADDRESS
 03 S-STREET (A25)
 03 S-CITY (A20)
 03 S-PROVINCE (A20)
 03 S-POSTAL-CODE (A6)
 02 CONTACT (A30)
 02 CREDIT-RATING (A3)
 02 CREDIT-LIMIT (P11.2)
 02 DISCOUNT-PERCENTAGE (P3.2)
 02 CUSTOMER-WAREHOUSE-ID (A3)
 02 CUSTOMER-TIMESTAMP (T)
01 CUSTOMER-ID (N5)
01 REDEFINE CUSTOMER-ID
 02 STRUCTURE
 03 CUSTOMER-NUMBER (N5)

The SDC supports the following features in a data area definition:

• All Natural field formats: A, B, C, D, F, I, L, N, P, and T

• Scalar fields

• One, two, and three-dimensional arrays

• Structures

• Structure arrays

• Redefinitions, including the FILLER keyword

• Arrays with a variable number of occurrences (1:V)
– 199 –

Construct Spectrum SDK Reference __
10
Data Area Simulation Objects
Many different SDC objects are involved in data area simulation. These objects and
their properties and methods are illustrated in the following object diagram:

SDC Objects Involved in Data Area Simulation

NaturalDataArea

Application

NaturalFieldDefFieldDef()

Allocate

MainLibrary

LIFDirectory

Initialize

NaturalFieldSpec
FieldName

FieldSpec

ParseFieldSpec

IndexThru()

IndexFrom()

IndexOcc()

IndexType()

Indices

Structure

FieldRef()
FieldDefs

Name

PackedDataLength

PackedData

CheckFieldSpec

Reset

SetField

GetField

Field()

LibraryImageFile

Definition

DefinedRank

Rank

Redefined

LevelTypeTrail

ThruIndex()

FromIndex()

Decimals

Length

Format

FormatLength

Name

Structure

Level

Show

Copy

ShowValueBuffer

Method Method

Property

Object

Key

Object

Property

Property() Array property

DataAreaDefinition

Name

Definition

LibraryImageFile

FieldDefs

CheckFieldSpec

VFieldCount

ResolveVsParseDataArea

FullName

DisplayLine

FullName

LineType

Occ()

VBLength

VBOffset
DataArea-
Definition

PackedDataLength
– 200 –

__ Using the Spectrum Dispatch Client
10
Application Object
The application object is one of the externally-creatable objects exposed by the SDC. It
has the following properties and methods related to data area simulation:

A client application creates one global instance of the application object and uses it to
create NaturalDataArea objects.

Example of declaring and initializing the application object

Public SDCApp As SDCLib6.Application

Public Sub Main
 Set SDCApp = New SDCLib6.Application
 SDCApp.Initialize App.Path, "LIBRARY"
End Sub

This example creates a global Application object called SDCApp and then uses the ob-
ject’s Initialize method to set the library image file directory and main library.

For more information on the library image file directory and the main library, see Li-
brary Image Files and the Steplib Chain, page 227.

Property or Method Description

Initialize method Tells the SDC the name of the library image file directory
and name of the main library.

LIFDirectory property Returns the name of the library image file directory set
with the Initialize method.

MainLibrary property Returns the name of the main library set with the Initialize
method.

Allocate method Allocates a NaturalDataArea object.

Show method Displays a pop-up window showing the values of all fields
in one or more data areas (values can be edited).

ParseDataArea method Similar to Allocate, but creates a DataAreaDefinition
object that can be used to parse a data area. The
DataAreaDefinition does not store field values.
– 201 –

Construct Spectrum SDK Reference __
10
Create NaturalDataArea Objects
The data area allocator reads data area definitions from library image files. It then cre-
ates NaturalDataArea objects that know the structure of their data area definitions and
allow you to read and write fields in their data area.

� To create NaturalDataArea objects:

• Call the Allocate method of the Application object.
The Allocate method has the following syntax:

Function Allocate (DataAreaName As String, _
 ParamArray VSubstitutions() As Variant) _
 As NaturalDataArea

NaturalDataArea Class
The data area allocator creates data area objects that are instances of the NaturalDataAr-
ea class. Each object knows the structure of its own data area definition and allows you
to read and write fields in that data area.

The NaturalDataArea class defines the properties and methods of the simulated Natural
data areas. Each instance of this class stores details about its structure and maintains the
field values for a single Natural data area. A client application can create as many in-
stances of the same or different data areas as required.

where:

DataAreaName Is the name of a Natural data area.

VSubstitutions Is the parameter used when the data area has one or more 1:V
arrays. For information, see 1:V Fields, page 233.
– 202 –

__ Using the Spectrum Dispatch Client
10
The properties and methods of the NaturalDataArea class are:

Property or Method Description

CheckFieldSpec
property

Checks whether a field name is defined in the data area.
Raises a runtime error if the field name is not valid. For
example:

dataarea1.CheckFieldSpec "CUSTOMER-NUMBER"
dataarea1.CheckFieldSpec "ROW(1)"

Copy method Creates a copy of a NaturalDataArea object with the same
definition and the same field values. Field values changed
in one do not affect the other. For example:

Dim data1 As NaturalDataArea
Dim data2 As NaturalDataArea
' Allocate a data area.
Set data1 = Nat.Allocate2 (DATAAREA_CSASTD)
' Create a copy of this data area.
Set data2 = data1.Copy()

DataAreaDefinition
property

Provides information about the structure of a Natural data
area, such as the name, format, length, and level number of
each field.

Definition property Returns a multiple-line string containing the data area
definition as read from the library image file.

Field property Reads and writes the value in a field. This property
receives a field name as a parameter. If the field is part of
an array, also specify index values as part of the field
name. For example:

With dataarea1
 .Field("CUSTOMER-NUMBER") = 10001
 .Field("PHONE-NUMBER(1)") = "4165551234"
 .Field("STREET(1,1)") = "134 Hill Blvd."
 .Field("CUSTOMER-NAME") = sname
End With
– 203 –

Construct Spectrum SDK Reference __
10
FieldDef property Returns a NaturalFieldDef object defining a field. (For
information, see NaturalFieldDef Class, page 210.) If the
field is part of an array, any specified index values are
ignored. For example:

Dim flddef As NaturalFieldDef
Set flddef = dataarea1.FieldDef("M-CITY")
If flddef.FormatLength = "A20" Then
 ...
End If
' The following two lines do the same thing.
Set flddef = dataarea1.FieldDef("SALARY")
Set flddef = dataarea1.FieldDef("SALARY(1)")

You can also enumerate fields in the data area using a
numeric index instead of a string field name. For example:

For i = 1 to dataarea1.FieldDefs
 Print dataarea1.FieldDef(i).Name
Next

FieldDefs property Returns the number of field definitions in the data area
definition.

FieldRef property Creates a new NaturalDataArea object containing a subset
of the fields. For information, see FieldRef Property,
page 228.

GetField method Reads the value in a field. Similar to the Field property,
except index values are not specified as part of the field
name but as optional parameters. For example:

With dataarea1
 Print .GetField("CUSTOMER-NUMBER")
 Print .GetField("PHONE-NUMBER", 1)
 Print .GetField("STREET", 1, 1)
End With

LibraryImageFile
property

Returns the full file name of the library image file from
which the data area definition was loaded.

Name property Returns the name of the data area represented by the
object. This name was passed to the Allocate method.

PackedData property Returns field values for the data area as an alphanumeric
string. Assigning an alphanumeric string to this property
replaces the field values in the data area with the values in
the string. The length of the string must be the defined. The
following example copies all field values from one data
area to another:

dataarea2.PackedData = dataarea1.PackedData

Property or Method Description (continued)
– 204 –

__ Using the Spectrum Dispatch Client
10
PackedDataLength
property

Returns the length of the packed data. For example:

If Len(pdata) <> dataarea1.PackedDataLength Then
 MsgBox "The packed data is not " & _
 "the right length."
Else
 dataarea1.PackedData = pdata
End If

Reset method Resets the fields in the data area to their default values. For
example:

dataarea1.Reset

You can also pass a field name into the Reset method to
reset only that field. For example:

dataarea1.Reset "CUSTOMER-NUMBER"

You can also reset structures and multiple occurrences of
an array. For example:

dataarea1.Reset "CUSTOMER"
dataarea1.Reset "STREET(*,*)"
dataarea1.Reset "STREET(1,*)"

SetField method Writes the value in a field. Similar to the Field property,
except index values are not specified as part of the field
name but as optional parameters. For example:

With dataarea1
 .SetField 10001, "CUSTOMER-NUMBER"
 .SetField "4165551234", "PHONE-NUMBER", 1
 .SetField "134 Hill Blvd.", "STREET", 1, 1
End With

Show method Displays a pop-up window showing the values of all fields
in the data area. The syntax is:

object.Show

You can edit the field values.

ValueBuffer property Sets or returns a copy of the internal block of memory that
stores field values (the value buffer). Use this property to
copy a field value from one data area to another. For
example:

data1.ValueBuffer = data2.ValueBuffer

Property or Method Description (continued)
– 205 –

Construct Spectrum SDK Reference __
10
Case Sensitivity
Field names passed into the procedures of the NaturalDataArea class are not case-sen-
sitive. You can type the field name in uppercase, lowercase, or mixed case.

Tip: To be consistent with Natural, specify all field names in uppercase.

Alphanumeric Fields
When reading an alphanumeric field (format A), the returned value does not contain
trailing blanks. If a field contains only blanks, the value is returned as an empty string.
When assigning a value to a field, the value is truncated if it is longer than the field or
padded with spaces (internally) if it is shorter than the field.

Fully Qualified Field Names
Whenever a field name is passed into the procedures of the NaturalDataArea class or
DataArea, the field name can include the level 1 structure name as a qualifier. The level
1 structure name, however, is required if there is more than one field with the same
name in the same data area.

Example of using the level 1 structure name as a qualifier

01 CDAPROXY
 02 DATA-LENGTH(I4)
 02 DOMAIN(A8)
 02 OBJECT(A32)
 02 METHOD(A32)
01 CDAOBJ
 02 OBJECT(A20)

With dataarea
 .Field("DOMAIN") = "TEST"
 .Field("CDAPROXY.OBJECT") = "EMPLOYEE"
 .Field("CDAOBJ.OBJECT") = "EMPLOYEE"
End With
– 206 –

__ Using the Spectrum Dispatch Client
10
Redefined Fields
The SDC allows you to redefine fields, arrays, and structures just as in Natural.

Example of a redefined field

01 ACCOUNT(A12)
01 REDEFINE ACCOUNT
 02 COST-CENTER(A3)
 02 ACCT(A4)
 02 PROJECT(A5)

When the Cost-Center, Acct, or Project fields are updated, the change is also reflected
in the Account field. Similarly, when the Account field is changed, the Cost-Center, Ac-
ct, and Project fields are updated.

Redefinitions that change the format or interpretation of data may introduce side effects
that are implementation dependent.

Example of the side effects of using redefined fields

01 OBJECT-VERSION(N6)
 02 VERSION(N2)
 02 RELEASE(N2)
 02 MAINT-LEVEL(N2)

With myver
 .Field("VERSION") = 2
 .Field("RELEASE") = 1
 .Field("MAINT-LEVEL") = 1
 Print .Field("OBJECT-VERSION")' Prints: 20101
 .Field("RELEASE") = -1
 Print .Field("OBJECT-VERSION")' Prints: <implementation defined>
End With

Errors When Compiling
When cataloging a Natural module, the Natural compiler checks whether fields referred
to in Natural source code are actually part of the data area. If a field name is not valid,
if the wrong number of index values is specified for an array field, or if the data type is
not compatible, the Natural compiler generates a compile error.

The Visual Basic compiler cannot check for these errors because it does not have
knowledge of Natural. Because the SDC provides a runtime Natural simulation layer, a
Visual Basic developer will not discover an invalid field name until the statement that
uses it is executed.
– 207 –

Construct Spectrum SDK Reference __
10
Read Arrays and Structures
You must specify the necessary index values when reading or writing one, two, or three-
dimensional arrays. The following examples show two different ways to read array
fields.

Example of reading arrays with the GetField method

01 BROWSE-RECORDS(1:20)
 02 NAME(A5)
 02 OTHER-COLUMNS(A20/1:5)
01 ...

For irow = 1 To 20
 Print .GetField("NAME", irow); " ";

 For icol = 1 To 5
 Print .GetField("OTHER-COLUMNS", irow, icol); " ";
 Next
 Print
Next

Example of specifying a field with occurrences

Print .Field("OTHER-COLUMNS(" & irow & "," & icol & ")")

If the field has more than one dimension, specify the index values with a comma sepa-
rating them in the Field property. You can also read a structure field and return it as a
Byte array (as though the entire structure is defined as a B1 array). This is useful when
moving occurrences of a structure array.

The following example shows how to read and write occurrences of a structure array.
This example shuffles occurrences of the Item array down to simulate deleting the oc-
currence number stored in the DeleteItem variable.

Example of a data area definition

01 ITEM(1:10)
 02 NUMBER (N5)
 02 DESCRIPTION (A30)
 02 UNIT-COST (P7.2)
 02 QUANTITY (N5)
 02 TOTAL-COST (P7.2)
– 208 –

__ Using the Spectrum Dispatch Client
10
Example of reading occurrences of the Item array

With dataarea1
 For i = DeleteItem + 1 To 10
 .Field("ITEM(" & i - 1 & ")") = .Field("ITEM(" & i & ")")
 Next
End With

Runtime Errors
Many different runtime errors can result from using NaturalDataArea objects.

DataDefinitionArea Class
This class provides information about the structure of a Natural data area, such as the
name, format, length, and level number of each field. The NaturalDataArea and
DataAreaDefinition classes have many properties in common because they both store
the definition of a Natural data area. However, unlike the NaturalDataArea class, the
DataAreaDefinition class does not store field values.

The SDC provides two ways to create an instance of a DataAreaDefinition: using the
ParseDataArea method of the Application class to parse an inline data area definition
or using a data area definition in an external LIF file. Optionally, you can use the
DataAreaDefinition property of a NaturalDataArea object. In the SDC, a Natural-
DataArea object uses a DataAreaDefinition object to store the structure of the data area.
The DataAreaDefinition property returns a reference to that DataAreaDefinition object.

Property or Method Description

CheckFieldSpec
property

Checks whether a field name is defined in the data area. Raises
a runtime error if the field name is not valid. For example:

dataarea1.CheckFieldSpec "CUSTOMER-NUMBER"
dataarea1.CheckFieldSpec "ROW(1)"

Definition property Returns a multiple-line string containing the entire data area
definition as read from the library image file.

FieldDef property Returns a NaturalFieldDef object defining a field. For
information, see NaturalFieldDef Class, page 210.
– 209 –

Construct Spectrum SDK Reference __
10
NaturalFieldDef Class
NaturalFieldDef is an SDC class that returns the definition for a single field in a data
area definition. The FieldDef property of the NaturalDataArea class creates and returns
an instance of the NaturalFieldDef class. All properties defined by this class are read-
only. These properties are:

FieldDefs property Returns the number of field definitions in the data area
definition.

PackedDataLength
property

Returns the length of the packed data. For example:

If Len(pdata) <> dataarea1.PackedDataLength Then
 MsgBox "The packed data is not " & _
 "the right length."
Else
 dataarea1.PackedData = pdata
End If

Property Description

Decimals Returns the decimal length portion of the Natural format. If the
format is not numeric or packed numeric, it returns 0. Returns
0, 0, 2, and 0 in the FormatLength example.

DefinedRank Returns the number of dimensions of the field in the data area
definition. This property works similar to the Rank property,
except it returns the number of dimensions regardless of any
structure arrays it might be part of.

Format Returns the Natural format character. Returns N, A, P, and D
in the FormatLength example.

FormatLength Returns the format and length of the field in Natural syntax.
Returns N6, A20, P8.2, and D for the following example:

With employee
 Print .FieldDef("PID").FormatLength
 Print .FieldDef("FIRST-NAME").FormatLength
 Print .FieldDef("SALARY").FormatLength
 Print .FieldDef("HIRE-DATE").FormatLength
End With

Property or Method Description (continued)
– 210 –

__ Using the Spectrum Dispatch Client
10
FromIndex and
ThruIndex

Returns the low and high index values for each dimension of
an array field. Returns 1,10 and 5,7 in the following example:

01 VALUES(N10/1:10,5:7)
With data.FieldDef("VALUES")
 For i = 1 To .Rank
 Print .FromIndex(i) & ":" & .ThruIndex(i)
 Next
End With

FullName Returns the fully qualified field name (includes the level 1
structure name).

Length Returns the length portion of the Natural format. If the format
is D, L, or T, it returns 0. Length returns 6, 20, 8, and 0 in the
FormatLength example.

Level Returns the field’s level number in the data area definition.

LevelTypeTrail Returns a string that determines the nesting of this field in the
data area definition. This string has one character for each
level. Each character can be one of the following:
• F (field)
• S (structure)
• R (redefine)
• X (filler)

Property Description (continued)
– 211 –

Construct Spectrum SDK Reference __
10
LevelTypeTrail
(continued)

For the following data area example:

01 ROW-COUNT (N2)
01 ROW (1:10)
 02 ID (N6)
 02 ACCOUNT-NO (A16)
 02 REDEFINE ACCOUNT-NO
 03 DIVISION (A4)
 03 FILLER 1X
 03 GROUP (A5)
 03 FILLER 1X
 03 ENTITY (A5)

LevelTypeTrail returns:

Print .FieldDef("ROW-COUNT").LevelTypeTrail
' Prints "F"
Print .FieldDef("ROW").LevelTypeTrail
' Prints "S"
Print .FieldDef("ID").LevelTypeTrail
' Prints "SF"
Print .FieldDef("ACCOUNT-NO").LevelTypeTrail
' Prints "SF"
Print .FieldDef("DIVISION").LevelTypeTrail
' Prints "SRF"
Print .FieldDef(7).LevelTypeTrail
' Prints "SRX"

Name Returns the name of the Natural field.

Occ Returns the number of occurrences for each dimension of an
array field.

Rank Returns whether the field is a scalar field or part of an array.
Rank indicates the number of index values that must be used
when reading or writing the field values:
• 0 (scalar)
• 1 (one-dimensional array)
• 2 (two-dimensional array)
• 3 (three-dimensional array)

Redefined Returns True if the field is redefined later in the data area
definition.

Structure Returns the structure name if the field is part of a level 1
structure.

ThruIndex See FromIndex.

Property Description (continued)
– 212 –

__ Using the Spectrum Dispatch Client
10
Client/Server Communication
The other major function of the SDC is client/server communication. Many compo-
nents work together to enable client/server communication. These include:

• Application service definitions

• Dispatcher objects

• Dispatcher service definitions

The following sections describe these components in more detail.

Level 1 Block Optimization
Before you can understand application service definitions, you must understand level 1
block optimization. The SDC and the subprogram proxies implement this performance
optimization feature to minimize the amount of data that is transmitted between the cli-
ent and server for each remote CALLNAT.

With level 1 block optimization, each level 1 field in the parameter data of the Natural
subprogram becomes a numbered block. Each block can contain one or more Natural
fields, structures, or structure arrays. Instead of sending all parameter data between the
client and server for each remote CALLNAT, the SDC and Spectrum dispatch service
transmit a subset of the blocks in each direction.

To understand why this is useful, consider the following. For most Natural subpro-
grams, each field in the parameter data can be assigned a directional attribute to indicate
whether a field passes data into the subprogram, out of the subprogram, or both.

Note: These directional attributes are not supported by Natural. However, they may
be defined in the application service definitions supported by the SDC and
coded in user exits in subprogram proxies.

The following table summarizes these directional attributes:

Directional Attribute Description

IN Passed from the caller to the subprogram.

OUT Returned from the subprogram to the caller.

IN/OUT Passed from the caller to the subprogram, optionally
modified by the subprogram, and then returned to the caller.
– 213 –

Construct Spectrum SDK Reference __
10
If the parameter data is organized such that each block (level 1 field) contains only In,
Out, or In/Out parameters, then the SDC can use level 1 block optimization to send only
the In and In/Out parameters to the subprogram proxy. The subprogram proxy can send
only the Out and In/Out parameters back to the client. In some cases, the size of the In
or Out parameters is small compared to the total size of the parameter data. Level 1
block optimization can make a significant difference to the size of the data being trans-
mitted over your network.

Note: This block optimization feature does not allow directional attributes to be as-
signed at a level of granularity finer than level 1 fields.

Occasionally, it may not be possible to assign a static directional attribute to a parameter
because it may change its direction depending on the values of other parameters. This
is illustrated in the following example:

Example of parameter data for a Natural Construct object subprogram

DEFINE DATA
 01 CUSTOMER /* Object PDA
 02 CUSTOMER-NUMBER (N5)
 02 BUSINESS-NAME (A30)
 02 PHONE-NUMBER (N10)
 ...
 01 NCUSTPDA-ID
 02 ...
 01 NCUSTPDR
 ...
 01 CDAOBJ
 02 #FUNCTION (A15)
 ...
 01 MSG-INFO
 02
 ...
END-DEFINE

The object PDA is either In, Out, or In/Out, depending on the #FUNCTION flag in
CDAOBJ. When #FUNCTION contains Get, the object PDA contains data returned
from the subprogram to the caller, so it is an Out parameter. When #FUNCTION con-
tains Update, the caller is passing data in the object PDA to the subprogram, and
depending on whether the subprogram performs edits on the data, the subprogram may
also return updated values in the object PDA, so it is either an In or an In/Out parameter.

When using level 1 block optimization, the sender always decides which blocks are sent
to the receiver. Sender and receiver differs from client and server because the client and
server are both senders and receivers.
– 214 –

__ Using the Spectrum Dispatch Client
10
Client and Server are Both Sender and Receiver

When a request is sent to the server, the client is the sender and the server is the receiver.
When the response is sent to the client, the server is the sender and the client is the
receiver.

In the example above, different-sized ellipses show how the size of the request data may
be different from the size of the response data because the set of blocks may be
different.

Application Service Definitions
Application service definitions are defined on the server in the Construct Spectrum Ad-
ministration subsystem and on the client in a library image file. The following table
compares the information stored on the server and on the client:

Information Stored on Client Stored on Server

Domain name X X

Object name X X

Object version number X X

Method names X X

Name of subprogram proxy to
call for each method

X

Steplib chain to use when calling a
subprogram

X

Client is receiver

Client is sender

1. Request
ServerClient

2. Response

Server is sender

Server is receiver
– 215 –

Construct Spectrum SDK Reference __
10
Example of an application service definition in a library image file

[AppService CUSTOMER]
Domain=DEMO
Object=CUSTOMER
Version=4.4.1
Method=BROWSE,,4,1+3+4
Method=DEFAULT,,5,1+2+3+4+5
Method=DELETE,,5,2+3+4
Method=EXISTS,,5,2+4
Method=GET,,5,2+4
Method=INITIALIZE,,5,4
Method=NEXT,,5,2+4
Method=STORE,,5,1+4
Method=UPDATE,,5,1+3+4

Number of level 1 fields in the
parameter data area for each
method’s subprogram

X

Name of the level 1 fields sent to
the server for each method

X

where:

[AppService CUSTOMER] Introduces the application service definition and
identifies the application service definition name.

Domain, Object, and
Version

Identify the application service definition in the Construct
Spectrum Administration subsystem.

Method Defines a method within the application service.

Information Stored on Client Stored on Server
– 216 –

__ Using the Spectrum Dispatch Client
10
Each method line contains four values separated by commas:

• A logical method name used in your Visual Basic code.

• A physical method name that corresponds to a method name in the application service
definition on the server. If this name is the same as the logical method name, it can be
omitted, as in the example above.

• The number of level 1 fields in the parameter data of the subprogram associated with
the method. In the example above, the subprogram for the Browse method has four level
1 fields in its parameter data, and the subprograms for all other methods have five level
1 fields in their parameter data areas.

• The names of level 1 fields sent to the server for the method. In the previous example,
only the first, third, and fourth level 1 fields are sent to the server when calling the
Browse method.

The application service definitions on the client and server work together to allow a cli-
ent application to identify which subprogram to call on the server. To use the CallNat
method on the client, do not specify a Natural subprogram to call. Instead, specify the
name of an application service definition. The SDC uses this name to look up the do-
main name, object name, and version number, and passes these values to the Spectrum
dispatch service running on the server. The dispatch service uses the values to look up
the subprogram proxy to call.

The following example shows a CallNat method on the client using the application ser-
vice definition from the previous example:

Dispatcher.CallNat "CUSTOMER.GET", ncustpda, ncustpda_id, ncustpdr, _
 cdaobj, cdpda_m

Notice how the GET method name is appended to the CUSTOMER application service
name. If you do not specify a method name in the CallNat, the SDC uses the DEFAULT
method name and this method must exist in the application service definition.
– 217 –

Construct Spectrum SDK Reference __
10
Dispatcher Objects and Dispatch Service Definitions
Dispatcher is an SDC class that handles communication between the client and server.
It contains the networking components of the SDC.

The properties, methods, and related objects of the Dispatcher class are:

Dispatcher Objects

Dispatcher objects are created using the CreateDispatcher method of the Application
object.

Example of creating Dispatcher objects

Dim Dispatcher As Dispatcher
Set Dispatcher = SDCApp.CreateDispatcher()

Application
MainLibrary

LIFDirectory

Initialize

Language

UserID

Password

Dispatcher RetryPossible

Retry

Timeout

DispatchService

Encrypt

Compress

RequestProperty()

RetryMessage

DisplayRetry DisplayErrors

Successful

ErrorValue()

ErrorMessage

ErrorNumber

ErrorSource

TraceAutoReset

TraceOption()

TraceCommand

TransactionActive

Abort

Commit

StartTransaction

CallSystem

CallNat

Service DispatcherProperties

ID

Property()

DispatcherServices
Count

ServicesFile

Service()

DispatchServices

PasswordEmpty

CreateDispatcher

Refresh

Method Method

Property

Object

Key

Object

Property

Property() Array property

Refresh

NewPassword

BrokerSession
– 218 –

__ Using the Spectrum Dispatch Client
10
The properties and methods of the Dispatcher object are separated into the following
functional groups:

• Service selection

• Remote subprogram invocation

• Timeout, retry, and resume handling

• Compression and encryption

• Tracing

• Database transaction control

• Error reporting

The following sections describe each of these groups in more detail.

Service Selection
You may have multiple Spectrum dispatch services running on one or more server plat-
forms simultaneously. There could even be different types of Spectrum dispatch
services, each with its own defaults, security settings, FUSER, and so on running at the
same time. Before sending any request, the client must first identify which Spectrum
dispatch service to connect to. You do this by setting the DispatchService property to
the ID of a valid Spectrum dispatch service.

The available dispatch services are defined in the Construct Spectrum Administration
subsystem on the server platform. On the client, these dispatch services are defined with
the Spectrum Service Manager.

Each dispatch service definition specifies the following values:

• EntireX Broker ID

• Server class

• Server name

• Service

If you are familiar with EntireX Broker, you will recognize that this combination of val-
ues uniquely identifies an EntireX Broker service. Each Spectrum dispatch service is
actually an EntireX Broker service.
– 219 –

Construct Spectrum SDK Reference __
10
Remote Subprogram Invocation
To send a request to the Spectrum dispatch service, use the CallNat and CallSystem
methods. These methods return True if the call was successful and False if the call was
unsuccessful.

The CallNat method invokes a Natural subprogram on the server.

Syntax of the CallNat method

Function CallNat (ByVal AppServiceName As String, _
 ParamArray DataAreas() As Variant) As Boolean

The name of the application service is always required. Following this name, you can
specify zero or more instances of the NaturalDataArea class passed as parameters to the
target subprogram. The parameters are passed by reference. When the subprogram re-
turns, any changes the subprogram made to fields in the data areas are also available in
the NaturalDataArea objects. To take advantage of level 1 block optimization, you can
include a method name in the first parameter.

Example of implementing level 1 block optimization

Dispatcher.CallNat "CUSTN.GET", custpda, custpda_id, custpdr, _
 cdaobj, cdpdam

Use the CallSystem method to send system commands to the Spectrum dispatch service
or to invoke an arbitrary proxy.

where:

GET Is the method name appended to the subprogram name. Use a period (.)
to separate the two. Only the blocks specified in the method definition
are sent to the server in the request data.
– 220 –

__ Using the Spectrum Dispatch Client
10
Syntax of the CallSystem method

Function CallSystem (ByVal DomainName As String, _
 ByVal ObjectName As String, _
 ByVal Version As Long, _
 ByVal MethodName As String, _
 ByVal SendData As String, _
 ByRef ReceiveData As String) As Boolean

Timeout, Retry, and Resume Handling
The CallNat and CallSystem methods do not return until the server sends back a re-
sponse. In effect, your calling application is locked up while the server is processing the
request.

If the server does not respond, your application may not regain control and the user will
have to terminate the application. For this reason, the Dispatcher object has a request
timeout. The timeout indicates the maximum number of seconds to wait for the server
to respond. When the specified number of seconds elapse, the dispatcher does one of
two things:

• Returns control to your calling application.

or

• Asks the user whether or not to continue waiting.

Use the DisplayRetry property to tell the Dispatcher object what to do. To return control
to your calling application, set DisplayRetry to False. To ask the user whether to con-
tinue waiting, set DisplayRetry to True and, optionally, set the RetryMessage property
to a message string that is displayed to a user. The default message is: “The server is not
responding. Would you like to continue waiting?”

The Timeout property determines the timeout duration in seconds and can be set to any
value from –1 to 32767. Zero (0) returns control to the client application immediately.
Negative one (–1) is the default and uses the timeout value specified in the dispatch
service definition.

Tip: You can change this timeout value using the Spectrum Service Manager. For in-
formation, see Using Construct Spectrum Tools, page 109, Construct Spectrum
Administration.

where:

CallSystem Is the method that allows you to send system commands directly to the
Spectrum dispatch service or invoke an arbitrary subprogram proxy by
specifying its domain, object, version, and method.
– 221 –

Construct Spectrum SDK Reference __
10
The following flowchart illustrates the life-cycle of a full request and response
combination:

Life Cycle of a Full Request/Response Combination
Showing Timeout Functionality

This example illustrates the SDC’s ability to resume the processing of a request because
of a timeout or a recoverable EntireX Broker error.

Some EntireX Broker errors, such as resource shortages or a temporary interruption in
Entire Network, are recoverable. If such an error occurs in the middle of processing a
request, either when sending the request data to the server or receiving the response data
from the server, the SDC can return the error to the calling application, which can then
decide whether to resume the request or not.

CallNat or
CallSystem

Is
this a resume

situation
?

No

Yes

Are
we resuming

the send
?

Yes

No

Return to caller
with resumable

error

Send request data
to dispatch service

Start time-out
counter

Did
a Broker

error occur
?

No

Yes
1

No

Does
user want to

continue waiting
?Yes

Set “resumable”
flag

Is
DisplayRetry

set
?

No

Display “Continue
waiting?” prompt

No Yes

Return to caller
successful

Is the
error class 7,
36, 37, 74, or

215
?

Yes

No

Return to caller
with error

Yes

Has
response data
been received

?
Yes

No

Did
a Broker

error occur
?

No

1

Has
time-out been

exceeded
?

Yes
– 222 –

__ Using the Spectrum Dispatch Client
10
To determine if the request is resumable, check the RetryPossible property after return-
ing from the call. If this property returns True, you may set the Retry property to True
and then reissue the call.

Example of resuming a call

Do
 If .CallNat("CUSTN.GET", custpda, custpda_id, custpdr, _
 cdaobj, cdpdam) Then
 ' Request was successful.
 Exit Do
 Else
 smsg = "The following error occurred: " & _
 .ErrorSource & ":" & .ErrorNumber & " - " & _
 .ErrorMessage & vbLf & vbLf & _
 "Click OK to try again or Cancel to quit."
 If MsgBox(smsg, vbOkCancel) = vbCancel Then
 Exit Do
 End If
 If .RetryPossible Then .Retry = True
 End If
Loop

If an error occurs in this example, the error message is displayed to the user, along with
a prompt asking if the user wants to try again. If the user chooses to try again, the same
call is performed.

What happens during the second call depends on the setting of the Retry property. If the
error is resumable (RetryPossible is True), set Retry to True and the previous request is
resumed. If the error is not resumable (RetryPossible is False), the second call initiates
an entirely new request.

Compression and Encryption
The SDC can compress or encrypt the request data it sends to the Spectrum dispatch
service.

Compression can significantly reduce the size of the data. This can reduce the transmis-
sion time, especially over slow network connections such as dialup connections. The
compression algorithm reduces sequences of repeating characters, which are quite com-
mon when the request and response data contain partially-filled Natural data areas.

To enable compression, set the Compress property to True. To enable encryption, set
the Encrypt property to True. These properties remain set until you change them.

Note: These properties only compress and encrypt the request data sent from the cli-
ent to the Spectrum dispatch service. The decision to compress or encrypt the
response data is made in the subprogram proxy on the server.
– 223 –

Construct Spectrum SDK Reference __
10
Tracing
Tracing options allow you to track the data transmission to and from the server. You set
these tracing options, depending on the type of data you want to trace, by setting the
properties of the Dispatcher object.

The following Dispatcher object properties are available to set trace options:

• TraceOption array property with indices 1 to 15.

• TraceCommand string property.

• TraceAutoReset Boolean property, which automatically resets the trace options after
the call to the Spectrum dispatch service.

For more information about setting tracing options and understanding the result, see
Debugging Your Client/Server Application, page 161.

Database Transaction Control
Each request sent to the Spectrum dispatch service can be handled by a different copy
of the Spectrum dispatch service. While processing a request, you have exclusive access
to the server. Once the server sends the response data back to the client, the server is
available for your next request or a request sent by someone else.

The SDC also gives you exclusive access to a specific server across more than one re-
quest. To have this exclusive access, you must specify when you want to start having
exclusive access to a server and when you are finished with it. While you have exclusive
access, the server is dedicated to your client application and only accepts requests from
you. No other client application can send requests to that server (unless you pass a ref-
erence to the Dispatcher object for another client application). Try to release the server
as soon as possible, as you are preventing others from using it and there may be a lim-
ited number of servers running.

When you have exclusive access to a server, you can also issue END TRANSACTION
or BACKOUT TRANSACTION statements from the client application and be assured
that only your requests are affected. The Dispatcher class has three methods and one
property to support exclusive use of a server:

Method or Property Description

StartTransaction method Tells the Dispatcher object that you want exclusive
access to a server.

Commit method Sends a request to the server to issue an END
TRANSACTION statement and releases the server.

Abort method Sends a request to the server to issue a BACKOUT
TRANSACTION statement and releases the server.

TransactionActive property Returns True if you have exclusive access to a server.
– 224 –

__ Using the Spectrum Dispatch Client
10
Each Spectrum dispatch service has a transaction timeout value that ensures a client ap-
plication does not have exclusive access to the server for too long. The timeout period
begins as soon as the server sends the response data back to the client application. If the
client application does not send any more requests to the server within the timeout pe-
riod, the server issues a BACKOUT TRANSACTION statement and returns to the
server pool. If this happens, the client application is not notified until it tries to send the
next request. The request fails with an sdcerrTransactionTerminated error.

Note: The transaction timeout period is set on the Maintain Services panels in the
Construct Spectrum Administration subsystem.

To prevent transaction timeout, try to send all requests in succession and then release
the server. If your application interacts with the user between requests (or if an error oc-
curs and you display it to the user), there is a greater possibility of transaction timeout
occurring because the user may not respond immediately.

The server is also automatically released when the Dispatcher object is destroyed (after
all object references to it are released).

Error Reporting
Errors that can occur in the Dispatcher object include:

Error Types Description

Runtime errors Raised using the standard OLE automation error handling
mechanism. For more information about runtime errors, see
Deploying Your Client/Server Application, page 189, or
Construct Spectrum Messages.

Communication
errors

Occur during a remote call from the client application to the
subprogram. Error details are returned in the error properties of
the Dispatcher object: ErrorSource, ErrorNumber,
ErrorMessage, ErrorValues, and Successful. For more
information about communication errors, see Deploying Your
Client/Server Application, page 189, or Construct Spectrum
Messages.
– 225 –

Construct Spectrum SDK Reference __
10
User Identification and Authentication
The Application object has UserID, Password, and Language properties. These proper-
ties must be set before the first request is sent to the server, but may be changed at any
time after that. These properties are:

If the server uses security, it can authenticate the user ID and password for each request
and then check whether the user has the necessary permissions to execute the request.
If the server does not use security, any user ID and password assigned to these proper-
ties is ignored.

To indicate the spoken language, assign one of the Natural *LANGUAGE codes to the
Language property. This code is sent to the server with each request. Whenever the
server returns a message string, it looks up the correct translation based on the code.

Application Properties Description

UserID Identifies who you are to the server.

Password Provides authentication of your user ID.

PasswordEmpty Returns whether the Password property is set.

Language Identifies internationalized servers.
– 226 –

__ Using the Spectrum Dispatch Client
10
Library Image Files and the Steplib Chain
Library image files (LIFs) are special text files that contain SDC definitions. Each LIF
contains up to three different types of definitions:

• Data area definitions
For more information, see Data Area Definitions, page 198.

• Application service definitions
For more information, see Application Service Definitions, page 215.

• Steplib definitions

Syntax of the steplib definition

[StepLibs]
CST441S
SYSTEM

A steplib definition allows multiple applications to share a set of LIFs. Each application
may have its own main library, which contains just the definitions specific to that ap-
plication. Shared definitions can be placed in other LIFs, which can be included in each
application’s steplib chain.

When searching for data area and application service definitions, the SDC first exam-
ines the main library’s LIF. If it does not find the definition there, it looks for a steplib
definition in the file. If it finds the steplib definition, it examines the LIFs for the librar-
ies in the steplib definition, beginning with the first LIF on the list.
– 227 –

Construct Spectrum SDK Reference __
10
Advanced Features
The following sections introduce two advanced features you can use when developing
your applications. It includes:

FieldRef Property
The CallNat method of the Dispatcher class only accepts NaturalDataArea objects as
parameters to pass to subprograms. You can, however, pass individual fields to a sub-
program in Natural code.

Example of passing individual fields to a subprogram

ASSIGN CBROWSEA.COUNT = 10
CALLNAT 'CUSTB' CBROWSEA.COUNT
 CBROWSEA.ROWS(*)

In this example, one field and all occurrences of an array are passed into a subprogram.

Example of how NOT to pass parameters to subprograms

Dim cbrowsea As NaturalDataArea

Set cbrowsea = SDCApp.Allocate("CBROWSEA")
cbrowsea.Field("COUNT") = 10
Dispatcher.CallNat "CUSTB", cbrowsea.Field("COUNT"), _
 cbrowsea.Field("ROWS(*)")

In this example, the field values in CBROWSEA are passed to the Dispatcher object’s
CallNat method.

CBROWSEA Fields Passed to the CallNat Method

Feature Description

FieldRef Property Defines objects as parameters without duplicating data areas to
pass objects to a Natural CALLNAT.

1:V Defines arrays with variable numbers of occurrences.

CBROWSEA

ROWS(1:10)

COUNT

Dispatcher.CallNat “CUSTB”, cbrowsea.Field(“COUNT”), cbrowsea.Field(“ROWS.(I)”)
– 228 –

__ Using the Spectrum Dispatch Client
10
The problem with this example is that the Field property returns a value, not an object.
The second and subsequent parameters to the CallNat method must be NaturalDataArea
objects. Because the Field property returns a value, the CallNat method encounters a
runtime parameter type mismatch error.

Note: The reason the CallNat method accepts only objects as parameters is so the
dispatcher can maintain references to the objects and update them when the
response comes back from the server.

A better way to simulate Natural code is to create separate NaturalDataArea objects for
each parameter you are sending to the subprogram. The following example illustrates
these differences:

Example of creating separate NaturalDataArea objects for each parameter

Dim cbrowsea As NaturalDataArea
Dim mycount As NaturalDataArea
Dim myrows As NaturalDataArea

Set cbrowsea = SDCApp.Allocate("CBROWSEA")
Set mycount = SDCApp.Allocate("CBA-C") ' 01 COUNT(N3)
Set myrows = SDCApp.Allocate("CBA-R") ' 01 ROWS(A32/1:10)

cbrowsea.Field("COUNT") = 10

' Copy the CBROWSEA fields into the temporary data areas.
mycount.Field("COUNT") = cbrowsea.Field("COUNT")
myrows.Field("ROWS") = cbrowsea.Field("ROWS")

Dispatcher.CallNat "CUSTB", mycount, myrows

' Copy the fields from the temporary data areas back into CBROWSEA.
cbrowsea.Field("COUNT") = mycount.Field("COUNT")
cbrowsea.Field("ROWS") = myrows.Field("ROWS")

In this example, the two newly-defined objects (mycount and myrows) are Natural-
DataArea objects containing copies of COUNT and ROWS respectively. These two
objects are then passed into the CallNat method:
– 229 –

Construct Spectrum SDK Reference __
10
CBROWSEA Fields Defined as Objects to the CallNat Method

This example shows how to create additional data areas for the individual fields passed
to the subprogram. These data areas must be initialized from the CBROWSEA data area
before issuing the CALLNAT. After the CALLNAT, the data areas must be copied
back into CBROWSEA. This code looks quite different from the original Natural code.

A better solution is to create a pointer to a field within a NaturalDataArea object and
pass that pointer to the CallNat method of the Dispatcher object, effectively passing the
field by reference. Construct Spectrum provides the FieldRef property to do that. This
property of the NaturalDataArea class creates an instance of the NaturalDataArea ob-
ject that does not contain its own data, but rather points to a field in the data area that
created it.

Syntax of the FieldRef property

Function FieldRef (ByVal FieldName As String) As NaturalDataArea

The FieldRef property creates a new instance of the NaturalDataArea object with the
same field definitions as the field indicated by FieldName. However, any time a field
in the new data area is read or written, the field in the original data area is accessed. This
effectively creates two data areas referring to the same data.

where:

FieldName Is the field the FieldRef property points to.

CBROWSEA

ROWS(1:10)

COUNT

Dispatcher.CallNat "CUSTB", mycount, myrows

mycount
COUNT

myrows
ROWS(1:10)
– 230 –

__ Using the Spectrum Dispatch Client
10
Using the FieldRef Property to Create Two
Data Areas that Refer to the Same Data

You can now rewrite your original Visual Basic code using the FieldRef property in-
stead of the Field property.

Example of using the FieldRef property

Dim cbrowsea As NaturalDataArea

Set cbrowsea = SDCApp.Allocate("CBROWSEA")
cbrowsea.Field("COUNT") = 10
Dispatcher.CallNat "CUSTB", cbrowsea.FieldRef("COUNT"), _
 cbrowsea.FieldRef("ROWS")

In this example, the FieldRef property creates a temporary NaturalDataArea object that
is passed to the CallNat method. Each temporary data area contains a pointer to the orig-
inal data.

Using the FieldRef Property to Create Two
Data Areas that Refer to the Same Data

���� ���� ��	�
����� ���� ��	�
�

#��
� ��
���	
����$	
�

����
� �� ��

���� �

�����
� ����
��
� �$%
��

#��
� ��
���	
����$	
�

���
���	
�
��
�
������
�� ��
 �
	�

��	!
� � ���
���� ��
�

CBROWSEA

ROWS(1:10)

COUNT

Dispatcher.CallNat "CUSTB", cbrowsea.FieldRef(“COUNT”), cbrowsea.FieldRef(“ROWS”)

mycount
COUNT

myrows
ROWS(1:10)
– 231 –

Construct Spectrum SDK Reference __
10
Example of using the CUSTA Natural data area

01 CUSTOMER-NUMBER(N5)
01 FIRST-NAME(A20)
01 LAST-NAME(A20)
01 MAILING-ADDRESS
 02 STREET(A30)
 02 CITY(A20)
 02 PROVINCE(A20)
 02 POSTAL-CODE(A6)
01 SHIPPING-ADDRESS
 02 STREET(A30)
 02 CITY(A20)
 02 PROVINCE(A20)
 02 POSTAL-CODE(A6)

You can use the FieldRef property to obtain a pointer to the Mailing-Address or Ship-
ping-Address structures so you can process them individually, as the following example
shows:

Example of Visual Basic code

Dim mycust As NaturalDataArea
Dim mycustref As NaturalDataArea

Set mycust = SDCApp.Allocate("CUSTA")

For i = 1 To 2
 If i = 1 Then
 Set mycustref = mycust.FieldRef("MAILING-ADDRESS")
 Else
 Set mycustref = mycust.FieldRef("SHIPPING-ADDRESS")
 End If

' At this point, mycustref is an alias to either the mailing
' address or the shipping address fields of the mycust data area.

 With mycustref
 Print .Field("STREET")
 Print .Field("CITY")
 Print .Field("PROVINCE")
 Print .Field("POSTAL-CODE")
 End With
Next

This example did not specify the level 1 structure name to qualify the field name when
reading the Street, City, Province, or Postal-Code fields. This is because the Natural-
DataArea object returned by the FieldRef property only contains definitions for the
Mailing-Address or Shipping-Address fields.
– 232 –

__ Using the Spectrum Dispatch Client
10
1:V Fields
In a Natural parameter data area, you may specify an array with a variable number of
occurrences by using the index notation 1:V.

Example of specifying an array

01 #ROWS(1:V)
 02 ...

Some of the library image files may already contain similar data area definitions. How-
ever, you must specify the number of occurrences for each V to create an instance of
this data area. Specify the number of occurrences by using the optional VSubstitutions
parameter when you call the Application.Allocate method.

Example of specifying the number of occurrences for your array

Function Allocate (ByVal DataAreaName As String, _
 ParamArray VSubstitutions() As Variant) _
 As NaturalDataArea

For your arrays to operate successfully, you must provide a value for each V in the data
area definition or a runtime error will occur. The parameters following DataAreaName
in the Allocate call are called a V substitution list. The following examples illustrate an
Allocate call.

Example of a PDA

[TESTPDA]
01 PARM1(A5)
01 PARM2(A3/1:V,1:V)
01 PARM3(1:V)
 02 PARM4(N3/1:V)

Example of instantiating the PDA

[TESTPDA]
01 PARM1(A5)
01 PARM2(A3/1:10,1:5)
01 PARM3(1:20)
 02 PARM4(N3/1:5)

Example of calling the Allocate method

Set nda = SDCApp.Allocate("TESTPDA", _
 "PARM2", 10, 5, _
 "PARM3", 20, _
 "PARM4", 5)
– 233 –

Construct Spectrum SDK Reference __
10
In this example, the V substitution list consists of groups of parameters. Each group
identifies a field and provides the substitution values for the 1:V specifications for that
field. There must be as many groups as there are fields with 1:V specifications.

You can also store the V substitution list in an array and pass the array as a parameter
to the Allocate method.

Example of passing the array to the Allocate method

Dim vlist(1 To 7) As Variant

vlist(1) = "PARM2": vlist(2) = 10: vlist(3) = 5
vlist(4) = "PARM3": vlist(5) = 20
vlist(6) = "PARM4": vlist(7) = 5

Set nda = SDCApp.Allocate("TESTPDA", vlist)

When you read the FieldDef property to obtain the lower and upper bounds of an array
defined with 1:V, 1 is returned for the lower bound and the value specified for that
field’s V is returned for the upper bound.

Example of obtaining the upper and lower bounds of an array

With nda.FieldDef("PARM4")
 Print .FromIndex(1) & ":" & .ThruIndex(1) ' Prints "1:20"
 Print .FromIndex(2) & ":" & .ThruIndex(2) ' Prints "1:5"
End With

You can create instances of the same data area with different numbers of occurrences.

Example of using the same data area with varying numbers of occurrences

Dim data1 As NaturalDataArea
Dim data2 As NaturalDataArea

Set data1 = SDCApp.Allocate("#ROWS", 15)
Set data2 = SDCApp.Allocate("#ROWS", 100)

With data1.FieldDef("#ROWS")
 Print .FromIndex(1) & ":" & .ThruIndex(1) ' Prints "1:15"
End With

With data2.FieldDef("#ROWS")
 Print .FromIndex(1) & ":" & .ThruIndex(1) ' Prints "1:100"
End With

Note: The size of the data area must be no greater than allowed by Natural.
– 234 –

__
11
CREATING APPLICATIONS WITHOUT THE
FRAMEWORK

This chapter describes how to create a Construct Spectrum application without using
Construct-generated framework components. Working through the steps of creating a
simple application, you will learn how to create and deploy your application. While the
simple application is designed to run using Microsoft’s Visual Basic, you can use any
other development tool that fully supports OLE automation.

The following topics are covered:

• Setting Up the Server Components, page 236

• Generating Subprogram Proxies, page 240

• Creating the Library Image Files (LIFs), page 244

• Developing the Client Application, page 248

For information about creating Construct Spectrum applications using components gen-
erated using earlier versions of Natural Construct, see Moving Existing Applications
to Construct Spectrum, page 201, Construct Spectrum SDK for Client/Server
Applications.
– 235 –

Construct Spectrum SDK Reference __
11
Setting Up the Server Components
The following sections describe how to set up the server-side components to prepare an
environment for the client to be able to communicate with the server. You can create
the server-side components entirely within the Natural environment.

Create or Select Application Services
When creating new application services or selecting existing services for deployment
in a client/server environment, ensure that the Natural subprograms follow certain rules.
Natural subprograms primarily execute as remote services in environments where no
input and output devices are defined. Therefore, there are some restrictions imposed on
your Natural programs.

The following sections identify issues to consider when you are developing new appli-
cation services or adapting existing services for a client/server environment.

No Terminal I/O
Avoid the use of all commands that require input from the user or write information to
any external source other than a database file. This includes the INPUT statement as
well as the WRITE, PRINT, and DISPLAY statements.

While the INPUT statement cannot be used to input data from the user, you can use the
statement to retrieve data that was stacked using the STACK TOP DATA statement.

Only use the WRITE, PRINT, and DISPLAY statements to write information to the
Natural source area for the purpose of debugging your application. If you are running
servers in batch mode, you can send these statements to the batch output queue. The
data is only viewable after the batch job ends. For information, see Debugging Your
Client/Server Application, page 161.

Subprogram Interface
Construct Spectrum is only able to communicate with application services that are im-
plemented as subprograms. If necessary, you may invoke programs from inside the
called subprograms by using the FETCH RETURN statement.

No Global Data Area (GDA)
Called services do not normally define a global data area (GDA), as the contents of the
GDAs used by a subprogram are not preserved between calls. However, you can use
GDAs to overcome a shortage of local data area (LDA) storage when necessary.
– 236 –

_____________________________________ Creating Applications Without the Framework
11
Parameter Data Area (PDA) Data Size Limitation
All data transmitted between the client and server is converted into printable characters.
For example, an I2 integer requires 6 bytes of data during transmission: a sign byte and
five digits. The size of this converted data cannot exceed 32K. When checking or cata-
loging a subprogram proxy, Natural displays an error if the size of the converted data
exceeds 32K.

Subprogram Behavior
All subprograms invoked as application services must return to the calling routine. The
subprogram, and any called routines, cannot execute STOP, FETCH, or TERMINATE
statements. They should also avoid statements that affect the caller, such as RELEASE
STACK, STACK COMMAND, STACK DATA, and RELEASE VARIABLES. Called
subprograms should not modify the *ERROR-TA value.

Externalize Parameters
The best design strategy is to externally define the parameters of your subprogram prox-
ies. Only when the parameters are externally defined can the parameter data areas
(PDAs) be downloaded and incorporated into the Spectrum Dispatch Client.

However, Construct Spectrum does allow you to generate subprogram proxies for sub-
programs that define their parameters inline. If the subprogram accepts or returns large
amounts of data that is strictly input parameters or output parameters, consider grouping
all input parameters into one level 1 structure and all output parameters into another lev-
el 1 structure. Group parameters that are both input and output into a third level 1
structure. This allows data being sent between the client and the server to be optimized
so that only input data is sent to the server and only output data is returned to the client.

Timing Issues
Some application services perform tasks that require extensive processing. The length
of time spent in the application service affects the timeout values triggered in a client
system. If an application requires extensive time to execute, it may be necessary to de-
fine and associate such long-running processes with Spectrum dispatch services that use
inflated timeout values. These resource-intensive application services can execute un-
der a specially-configured dispatch service. This includes defining special services in
the EntireX Broker attribute files.
– 237 –

Construct Spectrum SDK Reference __
11
Example of Creating a Simple Natural Subprogram
This section describes how to create a small application service and generate the asso-
ciated subprogram proxy.

� To create your server-based components for the sample application:

1 Create a parameter data area named GCDA.
Use the following configuration and compile the PDA in the SAMPLE library:

Example of GCDA Parameter Data Area

For an example of this module, refer to SAMPLE_A in the SYSSPEC library.

Parameter GCDA Library SAMPLE DBID 17 FNR 38
Command > +
I T L Name F Leng Index/Init/EM/Name/Comment
All - -------------------------------- - ---- ---------------------------------
 1 GCD-DATA
 2 #OPERAND-1 I 4
 2 #OPERAND-2 I 4
 2 #RESULT I 4

----- Current Source Size: 143 Free: 43402 --------------------- S 4 L 1
– 238 –

_____________________________________ Creating Applications Without the Framework
11
2 Type the following code in the Natural editor and compile it as a Natural subprogram
named GCDN in the SAMPLE library:

 Example of GCDN Natural Subprogram

For an example of this module, refer to SAMPLE_N in the SYSSPEC library.

> > + Subprogram GCDN Lib SAMPLE
Top +....1....+....2....+....3....+....4....+....5....+....Mode Struct..
 0010 ***
 0020 ** This module accepts numbers as input paramters and returns the
 0030 ** greatest common divisor as the result.
 0040 ***
 0050 DEFINE DATA
 0060 PARAMETER USING GCDA /* Input and output parameters
 0070 LOCAL
 0080 01 #TEMP(I4) /* Local variable used in calculation
 0090 END-DEFINE
 0100 **
 0110 ** Repeat while the second operand value is not equal to 0.
 0120 REPEAT
 0130 WHILE #OPERAND-2 NE 0
 0140 DIVIDE #OPERAND-2 INTO #OPERAND-1 REMAINDER #TEMP
 0150 ASSIGN #OPERAND-1 = #OPERAND-2
 0160 ASSIGN #OPERAND-2 = #TEMP
 0170 END-REPEAT
 0180 **
 0190 ASSIGN #RESULT = #OPERAND-1
 0200 END
 +..Current Source Size: 799 Char. Free: 42970+... S 21 L 1
– 239 –

Construct Spectrum SDK Reference __
11
Generating Subprogram Proxies
The following sections describe how to make the newly-created GCDN Natural subpro-
gram accessible from the client. To do this, generate a subprogram proxy using the
Subprogram-Proxy model.

Subprogram-Proxy Model
The Subprogram-Proxy model is available in the Generation subsystem on the server
and as a model wizard in the Construct Windows interface. In the example, the model
wizard is used.

For more information about using the model, see Using the Subprogram-Proxy Mod-
el, page 103.

� To generate a subprogram proxy for the GCDN subprogram:

1 Access the Standard Parameters window for the Subprogram-Proxy wizard.

2 Enter the following information in the window:

Note: Many of the input values for the Subprogram-Proxy model are automatically
determined and set by the model itself.
– 240 –

_____________________________________ Creating Applications Without the Framework
11
Subprogram-Proxy Wizard — Standard Parameters

3 Generate and stow the GCD subprogram proxy.
Generation creates two new items:

– the generated GCD subprogram proxy

– the application service definition (generated into the Construct Spectrum Adminis-
tration subsystem)
– 241 –

Construct Spectrum SDK Reference __
11
Application Service Definition
The application service definition is automatically created when you generate a subpro-
gram proxy using the Subprogram-Proxy model. It defines the name and location of the
target subprogram to the Spectrum dispatch service, as well as which methods the target
subprogram supports.

The target subprogram can be any Natural subprogram, although there are many advan-
tages to creating the subprogram using the Object-Maint-Subp and Object-Browse-
Subp models.

To tailor your application service definition, use the following procedure. The example
uses the GCD subprogram proxy.

� To customize the generated application service definition:

1 Access the Construct Spectrum Administration subsystem main menu.

2 Enter “AA” in the Function field.
The Application Administration main menu is displayed.

3 Enter “MM” in the Function field.
The Application Administration Maintenance menu is displayed.

4 Enter “AS” in the Function field.
The Maintain Application Service Definitions panel is displayed.

5 Type the following values in the fields indicated:

– “D” in the Action field

– “SAMPLE” in the Domain field

– “GCD” in the Object field

– “01/01/01” in the Version field
– 242 –

_____________________________________ Creating Applications Without the Framework
11
6 Press Enter.
The application service definition associated with GCD is displayed:

Example of the Application Service Definition Panel

The application service definition for GCD was generated with one method — Default.
The Default method is generated automatically for each application service definition
unless the target Natural subprogram was generated using either the Object-Maint-Subp
or Object-Browse-Subp model.

The definition does not specify a steplib, although one is required to access the target
subprogram. Because the specified domain, SAMPLE, has a steplib defined, the appli-
cation service definition also uses SAMPLE by default. For more information, see Step
1: Define the Steplib Chain, page 43.

BSIF__MP Construct Spectrum Administration Subsystem BSIF__11
June 27 Maintain Application Service Definitions 3:15 PM

 Action (A,B,C,D,M,N,P) _

 Domain..................: SAMPLE____ *
 Object..................: GCDN_________________________
 Version.................: 01 / 01 / 01
 Description.............: GCDN______________________________________
 Default subprogram proxy: GCD_
 Steplibs................: ________________________________ *

 Subprogram
 01 Method Name Proxy Steplibs *
 -------------------------------- -------- --------------------------------
 1 DEFAULT_________________________ ________ ________________________________
 2 ________________________________ ________ ________________________________
 3 ________________________________ ________ ________________________________
 4 ________________________________ ________ ________________________________
 5 ________________________________ ________ ________________________________
Command: __
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
confm help retrn quit flip pref bkwrd frwrd main
Appl Srvc Definition DEMO-PRODUC displayed successfully
– 243 –

Construct Spectrum SDK Reference __
11
Creating the Library Image Files (LIFs)
Before you can call the target subprogram from the client application, you must create
a file on the client that describes the subprogram and any parameter data areas it uses.
This file is called a library image file (LIF) because it contains an image (or a copy) of
the Natural objects in your application library on the server platform. Definitions of all
objects used in the client application must be in the LIF. If your client application uses
objects from multiple libraries on the server, you must create one LIF for each library.

The file name for a LIF is the same as the name of the library, plus the extension .LIF.
For example, the LIF for the CSTDEMO library is CSTDEMO.LIF. All LIFs the client
application uses must be stored in the same LIF directory on your PC (or on a network
file server).

Each application can have its own LIF directory, or multiple applications can share a
single LIF directory containing many different LIFs.

The following sections describe how to use the Construct Spectrum Add-In in Visual
Basic to create and tailor LIFs for your application. Use the Download function to
download LIF definitions from an application library on the server to your client.

Construct Spectrum Add-In
Use the Construct Spectrum Add-In to download the subprogram and parameter data
area (PDA) definitions to a library image file.

Before You Start
• Ensure that you know the library name, database ID (DBID), and file number (FNR) of

the FUSER system file. This file resides on the server and contains the subprogram you
created earlier in an application library in the FUSER file.

• Choose or create a LIF directory on your PC for the library image file.

Note: You will create the client application in this directory in a later step.

• Ensure that you know the name of the subprogram proxy and all PDAs used by the
subprogram.

• Ensure that the Spectrum Dispatch Client is installed and configured properly. For in-
formation, see the Construct Spectrum and SDK Installation Guide for Windows.
– 244 –

_____________________________________ Creating Applications Without the Framework
11
Download Definitions

� To download the definitions:

1 Start Visual Basic if it is not already running.

2 Select Construct Spectrum > Download Generated Modules from the Visual Basic
Add-Ins menu.
The Download Modules window is displayed:

Download Window

3 Type the following values in the fields indicated:

– Name of the application library in Library

– Database ID in DBID

– File number of the FUSER file containing the library in FNR

Note: If you have already used the Download function, the DBID, FNR, and library
name used for that download are filled in automatically.
– 245 –

Construct Spectrum SDK Reference __
11
4 Enter “GCD*” in Module name to list all modules beginning with “GCD” in the library:

Searching the Module Field in the Download Window

5 Click List.
After a few seconds, a list of the modules matching the wildcard pattern is displayed. If
an error message is displayed, see Downloading the Client Modules, page 188,
Construct Spectrum SDK for Client/Server Applications, or Construct Spectrum
Messages.

Note: Only subprogram proxies and PDAs are displayed. Other Natural object types,
such as programs, maps, and copy code members, are not displayed because
they cannot be downloaded.
– 246 –

_____________________________________ Creating Applications Without the Framework
11
6 Select all subprogram proxies and PDAs associated with your subprogram.

Tip: To select more than one item on the list, use the standard Windows multiple-se-
lect actions (Shift-Click and Ctrl-Click), or use the mouse to drag a marquee
around the items you want to select.

7 Click Download.
The selected modules are downloaded.

8 Click Close to close the Download Modules window.

If an error message is displayed during the download process, see Construct Spectrum
Messages for information about resolving the error.

The download process creates a new library image file in the LIF directory or updates
an existing LIF. The following section describes how to develop a client application that
uses the LIF definitions to call the subprogram on the server.
– 247 –

Construct Spectrum SDK Reference __
11
Developing the Client Application
This section describes the minimum requirements to develop a client application that
calls your subprogram. Although the example uses Microsoft’s Visual Basic for devel-
opment, you can use any development tool that supports OLE automation.

This section assumes you are familiar with the following OLE automation concepts. If
any of these are unfamiliar, refer to the appropriate documentation for the development
tool you are using:

� To develop your client application:

� Step 1: Create a New Project, page 249

� Step 2: Add a Reference to the SDC Object Library, page 249

� Step 3: Write Code to Initialize the SDC, page 250

� Step 4: Create the User Interface, page 251

� Step 5: Write Code to Call the Subprogram, page 252

� Step 6: Run the Application, page 253

The following sections describe each of these steps in more detail.

OLE Automation Term Definition

object library (or type library) Provides definitions of all the objects, methods, and
properties exposed by an OLE automation server.

externally creatable object Object exposed by an OLE automation server that can
be created outside the server.

dependent object Object exposed by an OLE automation server that can
only be accessed using a method of a higher-level
object, such as an externally-creatable object.
– 248 –

_____________________________________ Creating Applications Without the Framework
11
Step 1: Create a New Project
� To create a new project:

1 Start Visual Basic.

2 Create a new Standard EXE project.
Save all project components in the LIF directory you created earlier. This makes
keeping track of all project components easier.

Step 2: Add a Reference to the SDC Object Library
Before you can use objects in the Spectrum Dispatch Client (SDC), you must add a ref-
erence to its object library in your Visual Basic project.

� To add a reference to the object library for the Spectrum Dispatch Client:

1 Select References from the Tools menu.
The References window is displayed.

2 Ensure that the Construct Spectrum Dispatch Client (VB6) is selected:

References Window

� To view the object library:

1 Select Object Browser from the View menu.
The Object Browser window is displayed.

2 Select SDCLib from Libraries/Projects.
– 249 –

Construct Spectrum SDK Reference __
11
Step 3: Write Code to Initialize the SDC
� To initialize the SDC:

1 Select Add Module from the Project menu.
A new module is added to your Construct Spectrum project.

2 Add the following code to the module:

Public SDCApp As New SDCLib6.Application
Public Dispatcher As SDCLib6.Dispatcher
Public Sub Main
 SDCApp.Initialize App.Path, "CSTDEMO"
 SDCApp.UserID = "GUEST"

 Set Dispatcher = SDCApp.CreateDispatcher()
 Dispatcher.DisplayErrors = True

 Form1.Show
End Sub

where:

Application Is an externally-creatable object exposed by the Spectrum
Dispatch Client. It is used to create all other objects.

App.Path Is a Visual Basic property that returns the name of the directory
containing your saved project. In this example, the project is
stored in the LIF directory.

App.Path returns the name of the directory where your
executable project is located. Your library image file must
always be in that directory.

Dispatcher Is an object used to communicate with the server platform.

Form1 Contains the user interface for the client application.

Initialize method Tells the SDC the name of the LIF directory and name of the
application library. Together, these two values tell the SDC the
name of the library image file.

Set Dispatcher =
CreateDispatcher()

Creates a Dispatcher object with methods that allow you to call
the subprogram on the server. If the DisplayErrors property is
set to True, the Dispatcher object automatically displays
communication errors. You do not have to write additional
code to display errors.

GUEST Is a predefined user ID in the Construct Spectrum
Administration subsystem containing the required security
definitions for this example. Every call to the server platform
requires the caller’s user ID to be known.
– 250 –

_____________________________________ Creating Applications Without the Framework
11
This code creates two object variables used throughout the application: SDCApp and
Dispatcher.

3 Select <App.Name> Properties from the Project menu.
The General tab in the Project Properties window is displayed.

4 Select “Sub Main” from the Startup Object field:

Project Properties Window

Step 4: Create the User Interface
� To create the user interface for the client application:

1 Ensure Form1 is open in design mode.

2 Add three TextBox controls and a CommandButton control, arranged as follows:

Example of the Layout of Form 1
– 251 –

Construct Spectrum SDK Reference __
11
3 Set the control properties as follows:

Step 5: Write Code to Call the Subprogram
� To code the Click event of the command button to call the subprogram:

1 Double-click the Command button.
The Code window is displayed.

2 Add the following code to the cmdCalculate_Click procedure:

Private Sub cmdCalculate_Click()

 Dim parms As NaturalDataArea

 Set parms = SDCApp.Allocate("GCDA")

 parms("#OPERAND-1") = Val(txtOperand1.Text)
 parms("#OPERAND-2") = Val(txtOperand2.Text)

 Screen.MousePointer = vbHourglass

 Dispatcher.CallNat "GCDN", parms

 Screen.MousePointer = vbDefault

 If Dispatcher.Successful Then
 txtResult.Text = parms("#RESULT")
 End If
End Sub

This code declares and allocates a Natural data area corresponding to the PDA expected
by your subprogram. Next, it assigns the numeric values in txtOperand1 and
txtOperand2 to the #OPERAND-1 and #OPERAND-2 fields in the data area. It then
calls the subprogram with the CallNat method for the Dispatcher object. The mouse
pointer changes to an hourglass icon for the duration of this call. Finally, if the call is
successful, the contents of the Result field are displayed in txtResult. If the call is un-
successful, the Dispatcher object automatically displays the error message (because you
set the DisplayErrors property to True).

Control Property Value

Text1 (Name)
Text

txtOperand1
<empty>

Text2 Type
Text

txtOperand2
<empty>

Text3 Type
Text

txtResult
<empty>

CommandButton Type
Caption

cmdCalculate
Calculate
– 252 –

_____________________________________ Creating Applications Without the Framework
11
Step 6: Run the Application

Note: Before running the application, save the project. This ensures that the
App.Path property in Sub Main returns the correct directory for the Initialize
call.

Tip: If you forget to save a new project, App.Path returns the working directory from
which you started Visual Basic. However, when you save to disk, App.Path re-
turns the name of the directory in which the project file is saved.

� To run the application:

1 Press F5.

2 Type a number into each operand text box.

3 Click Calculate.
The result is displayed in Result.

Note: The first call to the communication server platform will take a few seconds as
the EntireX Broker DLLs must be loaded into memory and initialized. Subse-
quent calls are much faster.

The Dispatcher object may display the following error in the cmdCalculate_Click
procedure:

Numeric overflow

Possible cause:
The value being assigned to the #OPERAND-1 or #OPERAND-2 field is too large for
the Natural format.

Resolution:
Enhance the code to check that values entered by the user into the text boxes are not too
large for the Natural format.

If the Dispatcher object displays an error, see Debugging Your Client/Server Appli-
cation, page 161, or Construct Spectrum Messages for information about resolving the
error.

For information about packaging the client application and installing it on another PC,
see Deploying Your Client/Server Application, page 189.

4 Close the window to return to design mode when you are finished testing the
application.
– 253 –

Construct Spectrum SDK Reference __
11
– 254 –

__
A

APPENDIX A: GLOSSARY

The following terms are used throughout the Construct Spectrum documentation set.
Each term is listed with its meaning.

Term Definition

active server page
(ASP) script

Script that activates the WebApp.cls page handler, which
opens the specified web page.

ActiveX business
object (ABO)

Visual Basic class that represents a Natural business object on
the client. The ABO wraps the Spectrum calls required to
communicate with the Natural subprogram exposed by a
subprogram proxy.

ActiveX DLL Data link library containing one or more ABOs. It is used to
package and deploy web applications.

application library Natural library containing the server application components
of a client/server application.

application service
definition

Definition in the Construct Spectrum Administration
subsystem that identifies the methods exposed by a
subprogram. The definition is created automatically by the
Subprogram-Proxy model. You can modify these settings on
the Maintain Application Service Definition panel in the
Construct Spectrum Administration subsystem.

application services Natural subprogram implementing methods that can be called
as remote services.

architecture High-level description of the organization of functional
responsibilities within a system. The architecture conveys
information about the general structure of systems. It defines
relationships between system components, but not the
implementation of components.

browse command
handler

Defines the commands linked to a browse dialog. It also acts
as the initial target of commands, typically redirecting them to
other application components. See also command handler,
page 257.

browse data cache Area containing database records returned from the server.
Records are usually displayed in a browse dialog.
– 255 –

Construct Spectrum SDK Reference __
A

browse dialog Generic GUI browse window called to display any browse data
residing on a mainframe or PC.

browse process Process by which framework components and generated
browse components retrieve data and, optionally, display it in
a browse dialog.

For example, a browse process can retrieve rows of data,
search for specific values, and then perform calculations and
conditional processing. Users can display the results in a
browse dialog, if desired.

business data
type (BDT)

Type validation on the client that applies business semantics to
a field. Typically, BDTs are used to format field data specified
by the user.

For example, if an application has an input field to enter a
phone number, you can associate a BDT with the field to
reformat the number with hyphens. A user can enter
“7053332112”. When the user moves to the next field or
performs another action, the number is automatically
reformatted as 705-333-2112.

Construct Spectrum supplies standard BDTs, which you can
customize, or you can create your own. BDT modifiers are
added to the keyword components of a field in Predict.

BDT class Collection of all BDT procedures.

BDT controller
class

Collection of methods available to members of a BDT class.
See also BDT class.

BDT controller
object

Supplied client framework component that is an instance of the
BDT controller class and uses the methods available to that
class. Each application declares a BDT controller object,
which records and maintains a list of names for each BDT and
points to the BDT definition. See also business data type
(BDT), page 256.

BDT modifier Additional logic users supply to modify the formatting or
validation rules for a BDT. For example, BTD_NUMERIC
ensures that only numeric values are entered in a field. You can
also add a modifier to round numeric values. To increase
flexibility, each BDT defines its own modifiers.

BDT procedure Code that implements a BDT.

Term Definition (continued)
– 256 –

___ Appendix A: Glossary
A

business object Conceptual abstraction that groups the attributes and behaviors
associated with a business entity, such as Customer or Order.
See also Visual Basic business object, page 269.

Business-Object-
Super-Model model

Model (available in the Construct Windows interface and
Generation subsystem) that generates multiple modules for
both web or client/server applications that do not use the
Construct Spectrum client framework.

Business-Object-
Super-Model wizard

Wizard that generates maintenance and browse subprograms
and subprogram proxies for business objects.

cardinality Number of dimensions of information. Information with the
same number of dimensions has the same cardinality.

child model Individual model for which a super model (parent model)
collects parameters and generates specifications.

client application Portion of a Construct Spectrum client/server application that
runs on a Windows platform.

client framework Supplied set of cooperating Visual Basic classes that form a
reusable design. It provides a skeleton of functionality, which
you can customize or fill with generated and hand-coded
Visual Basic modules.

The client framework reduces the size of generated
components and allows them to interact. It includes forms,
classes, procedures, global variables, and constants that are
shared among generated application components. It supplies
both client and server components.

code block One or more lines of code in a Visual Basic module that can be
manipulated in the code editor as a block.

command block Code block that tells the Natural Construct nucleus to treat the
text within the block as a separate module and to apply the
specified command to the block. Super models use command
blocks to generate multiple modules.

command handler Object, generally a Visual Basic class, that processes a
command. The client framework calls command handlers
when a user clicks a menu command or toolbar button. One
command handler can handle multiple commands. See also
command handler list, page 258, and hook, page 261.

Term Definition (continued)
– 257 –

Construct Spectrum SDK Reference __
A

command
handler list

List of command handlers for each command ID. The last
command handler hooked to a command ID is called first. See
also hook, page 261.

command ID Unique identifier for an application-specific command sent
when a user clicks a menu command or toolbar button. Define
these commands by specifying a single command ID as
“constant” for each unique menu and toolbar command.

complex redefine Redefinition of a data area containing multiple data types,
multiple redefinitions of a data field, or multiple levels of
redefined fields.

compression Reduce the byte size required to transmit data to and from the
client and server. Data is compressed when it is sent and then
decompressed when it reaches its destination. This reduces the
size of data transmissions and improves network performance.

Construct
Spectrum

Application consisting of a client and server component. The
client component is a Construct Spectrum application running
in Visual Basic. The server component is a set of subprograms
accessed remotely by the client component.

Construct
Spectrum Add-In

Customized functionality added to the Visual Basic
environment.

Construct Spectrum
Administration
subsystem

Mainframe subsystem used to maintain and query tables
defining Construct Spectrum application services and security.

database record Logical view of database information. A database record can
be comprised of one or more logically related database files or
tables. Construct Spectrum represents database information in
parameter data areas (PDAs).

DBID Acronym for database ID, which is the number identifying the
server database containing application components.

Term Definition (continued)
– 258 –

___ Appendix A: Glossary
A

debugging tools Utilities you can use to locate and analyze logic errors. You
can simulate client calls online and use traditional debugging
tools, such as:
• Trace options, which allow you to save data from a client

call to a file on the server and then use the data to recreate
situations that caused errors.

• Input and output statements, such as INPUT, PRINT, and
WRITE, which allow you to step through the program for
testing purposes.

• Natural Debugging facility, which you can use to establish
a debug environment. For information, see the Natural
Debugging facility in the Natural documentation.

dependent object Object exposed by an OLE automation server that can only be
created using the method of a higher-level object. See also
externally-creatable object, page 260.

deployment Movement of an application from a development environment
to a production environment.

dialog GUI form running on the client.

dispatcher or
dispatch service

Server component used to broker communications between
server components and client framework components. See also
Spectrum dispatch service, page 267.

domain Entity that defines a collection of related business objects (for
example, Test, Admin, and Sales).

double-byte
character set
(DBCS)

Related collection of characters in some non-Latin languages
that require two bytes to display.

download data Transfer (copy) modules from the server to the client.

encapsulation Technique in object-oriented programming in which the
internal implementation details of an object are hidden from
users of the object. Methods control how the object data is
manipulated. Encapsulation allows internal implementations
to change without affecting the way an object is used
externally.

encryption Encoding data so it is unusable for individuals without access
to the decryption algorithms. Construct Spectrum allows you
to encrypt sensitive data, such as payroll information, during
network transmission. Data is decrypted when it reaches its
destination.

Term Definition (continued)
– 259 –

Construct Spectrum SDK Reference __
A

Entire Broker
service settings

Collection of Entire Broker-related parameters, including
Entire Broker ID, server class, server name, and service.

Entire Broker stub Entire Broker DLL on a Windows platform.

event Action recognized by an object, such as pressing a key or
clicking a mouse. You write code to respond to events.

externally-creatable
object

Object exposed by an OLE automation server that can be
created outside the server. See also dependent object, page
259.

field Component of a database record. The term also refers to areas
on a panel in which values are entered.

FNR Acronym for the file number that identifies a specific server
database file containing application components.

foreign key Key field pointing to a record in an external file. For example,
the demo application has an Order file containing a foreign key
to the Warehouse field in the Warehouse file. Foreign keys can
be set up with a browse function, enabling users to search for
and select values.

form Window (dialog) that acts as the interface for an application.
You add controls and graphics to a form to create the effect you
want. Construct Spectrum supplies forms in the client
framework and generates form modules for business object
maintenance dialogs.

When you run a project, forms are compiled into GUI dialogs
that the user interacts with while using the application. Some
forms, such as the generic BrowseDialog form, are
dynamically configured at runtime by the client framework to
alter the look of the form.

Form definitions are saved in files with the extension .frm.

form section Portion of a web page containing a block of related
information.

framework
templates

Structure or container supplied for applications. These
customizable templates include header, footer, navigation bar,
messages area, and constants.

generate Process of producing code from specifications.

Term Definition (continued)
– 260 –

___ Appendix A: Glossary
A

generated
module

Generated component for either the client or server portion of
an application. Generated server modules include Natural
subprograms, subprogram proxies, and parameter data areas.
Generated client modules include object factories, dialogs, and
maintenance objects.

generation
data cache

In-memory hierarchical data structure that allows you to
quickly retrieve stored generation data.

grid Displays 2-dimensional data for a client/server application in a
table format.

One-dimensional data shows one type of data, such as a phone
number, name, or quantity. Two-dimensional data shows
additional information in a grid or table. For example, the
detail lines on an order can be displayed in a grid with each
grid row corresponding to a unique line item. Each column in
the grid corresponds to a discrete piece of information about
the line, such as an item name, price, or quantity.

grid control GUI control that displays related information in a table format.
For example, purchase order line items can be displayed in a
grid. The grid control supplied with Construct Spectrum sizes
itself to the minimal width required to display all grid
components. You can configure the grid control as desired.

group Collection of users defined in the Construct Spectrum
Administration subsystem.

GUI Acronym for graphical user interface.

GUI control
override

Use Predict keywords to force a GUI control derivation. See
also keyword, page 262.

hook Associate a command handler object with a command ID. See
also command handler, page 257, command handler list,
page 258, and command ID, page 258.

host See server, page 266.

HTML fragment Portion of HTML that is not a complete web page.

HTML template HTML that may contain replacement tags, which are
dynamically exchanged for content or nested HTML templates
at runtime.

HTML Template
wizard

Wizard used to generate HTML templates.

Term Definition (continued)
– 261 –

Construct Spectrum SDK Reference __
A

http request Parameterized list of named value pairs sent by a browser
client to a web application.

instantiation Process of creating an instance of a class. The result is an
object.

internationalization Adapting an application to make it easy to localize. See also
localization, page 262.

job control
language (JCL)

Command language used for batch jobs that tells the computer
what to do.

keyword Predict metadata type that acts as a label or identifier.

Level 1 data
block

Level one field or structure and its subfields in a Natural
parameter data area (PDA).

Level 1 data
block optimization

Technique to improve the performance of client/server
applications by reducing the volume of data transmitted across
a network. Rather than sending all data blocks associated with
an object, only the required blocks are sent.

library image
file (LIF)

File that defines Natural definitions used by the Spectrum
Dispatch Client.

LIF definitions
module

BAS module in a Visual Basic project containing the
definitions for application services, parameter data areas, and
subprograms.

localization Process of translating and adapting a software product for use
in a different language or country.

lookups Return descriptive information when a user requests a browse
dialog or enters a value in a foreign key field on a maintenance
dialog. For example, assume the Warehouse Number field is a
foreign key field in the Order dialog and Warehouse Name is
a descriptive field attached to the foreign key value. When a
user enters a valid warehouse number, the lookup returns the
name of the warehouse for display in the dialog.

maintenance
dialog

GUI dialog from which a user can perform one or more actions
on a business object. For example, a Customer Order object
can be represented on a maintenance dialog. Using this dialog,
an authorized user can add, delete, or update customer order
information.

Term Definition (continued)
– 262 –

___ Appendix A: Glossary
A

MDI child Window or dialog opened from an MDI parent window in a
client/server application. For example, the Order maintenance
dialog in the demo application is an MDI child to the MDI
frame window.

MDI frame Standard Visual Basic MDI frame supplied with the Construct
Spectrum client framework.

MDI parent MDI window from which other windows are opened and
displayed in a client/server application. The MDI frame
supplied with the client framework is an MDI parent.

menu On a mainframe server, a panel or window listing available
functions. To access a function, users enter a value in an input
field or move the cursor to a value and press Enter.

In Windows, a pull-down dialog listing the available functions.
To access a function, users select an option from the menu
using the cursor or a keystroke combination.

menu bar Displays the menus available for user selection. By default,
Construct Spectrum client/server applications contain File,
Edit, Actions, Window, and Help menus on the menu bar, each
containing standard menu commands.

metadata Information about data. Metadata describes how physical data
is formatted and interrelated. It includes descriptions of data
elements, data files, and relationships between data entities.
Typically, metadata is maintained in a repository known as a
data dictionary, such as Predict.

method Procedure that operates on an object and is implemented
internally by the object. For example, the Update method
updates a Customer Order object after changes to the order
information.

model Template used to generate modules. Each model contains one
or more specification panels. Using these panels, you can
specify parameters for a desired module and then generate the
corresponding code. Natural Construct provides numerous
models, including the Object-Maint-Subp and Subprogram-
Proxy models.

module Single application component, such as a hand-coded Natural
program, subprogram, or data area or a Natural Construct-
generated program, subprogram, data area, or subprogram
proxy.

Term Definition (continued)
– 263 –

Construct Spectrum SDK Reference __
A

multi-level
security

Security you can define at a high level or at a detailed level
affecting many objects. For example, you can apply multi-
level security to domains, objects, and methods.

multiple-document
interface (MDI)

Microsoft Windows paradigm for presenting windows
whereby a parent window can encompass one or more child
windows. See also MDI child, page 263, and MDI parent,
page 263.

Natural Construct
nucleus

Sophisticated driver program that invokes the model
subprograms at the appropriate time in the generation process
and performs functions common to all models, such as opening
windows and performing PF-key functions. The nucleus
communicates with the model subprograms through standard
parameter data areas (PDAs). These PDAs contain fields
assigned by Natural Construct, as well as fields required by a
model.

Natural Debugging
facility

Utility available in a Natural environment to help you locate
and analyse logic errors. To access the facility, use the Invoke
Proxy function in the Construct Spectrum Administration
subsystem. The subprogram proxy sets up an online
environment that simulates the client/server environment and
allows you to use all the features of the Natural Debugging
facility.

navigation bar Menu bar on a web page containing links to other pages or
actions.

node Individual computer or, occasionally, another type of machine
in a network.

nucleus See Natural Construct nucleus, page 264.

object Any application component, such as a form or record. A
business object is a group of services related to a common
business entity, such as Customer, Order, or Department.

object factory Visual Basic module that identifies all objects and methods in
an application and instantiates objects upon request.

Object Factory
wizard

Visual Basic Add-In that updates an object factory in a
Construct Spectrum web application.

object library Provides definitions for all the objects, methods, and
properties exposed by an OLE automation server. Equivalent
to type library, page 268.

Term Definition (continued)
– 264 –

___ Appendix A: Glossary
A

OLE Acronym for object linking and embedding.

OLE automation server Code component that passes objects to other applications so
they can programmatically manipulate the objects.

overflow
condition

Situation where there are more fields than can be displayed on
a dialog.

package Collection of all modules necessary to implement a business
object. A package combines components and classes to
provide both browse and maintenance services for a database
table. It is composed of a set of modules generated from a
multi-module generation. An application is made up of one or
more packages.

page handler Visual Basic class that exchanges replacement tags on an
HTML template with database content or another HTML
template.

Page Handler
wizard

Construct Spectrum Add-In that generates page handlers for
web applications.

parent model Super model that collects parameters for child models and
generates specifications.

parse area Code in a page handler that locates and exchanges HTML
replacement tags.

ping Request sent to a service to determine whether the service is
running.

platform Piece of equipment that, together with its operating system,
serves as a base on which you can build other systems. For
example, an MVS mainframe computer can serve as a platform
for a large accounting system.

project Collection of files used to build an application in Visual Basic.

project group Collection of two or more Visual Basic projects, for example,
web and ABO projects. A project group uses a .vbg extension.

property Characteristic of an object, such as size, caption, or color. In
Construct Spectrum, it refers to the data settings or attributes
for an object in Visual Basic.

Term Definition (continued)
– 265 –

Construct Spectrum SDK Reference __
A

regenerate/preserve
status

Status indicating whether a code block in a module is
regenerated or preserved during regeneration of the module. If
you mark a block to be regenerated, it is replaced or deleted. If
you mark a block to be preserved, it is not changed during
regeneration.

remote call Communication with an object residing in a different location,
such as a server.

replacement tag HTML tag that is replaced with database content or another
HTML template when the web page is assembled. Some
replacement tags can be used to remove existing sections of
HTML. For example, you can use a security tag to specify
content that only certain users can access.

resource Text or binary value that can be localized. See also
localization, page 262.

run Execute or invoke a module or application.

security cache File used to store recently-accessed security data.

server Computer that provides services to another computer (called a
client) and responds to requests for services. On multitasking
machines, a process that provides services to another process
is called a server.

server application Application that runs on a server machine.

service Software service that runs on a server. Several services can run
on one server.

service exit Exposed exit routine called by the Spectrum dispatch service;
it can be replaced by a user-supplied routine.

service log File used to store service log data.

shutdown Command sent to a service to terminate the service.

software
development kit
(SDK)

See toolkit, page 268.

Spectrum
client/server
application

Application created using the Construct Spectrum wizards and
add-ins. Users access mainframe business functions and data
through a Visual Basic component running on a Windows
platform.

Term Definition (continued)
– 266 –

___ Appendix A: Glossary
A

Spectrum Control
record

Record that is created daily and contains system control and
statistic data for a Spectrum dispatch service.

Spectrum Dispatch
Client (SDC)

Provides the Construct Spectrum data exchange, which
facilitates calls from a client to Natural subprograms running
on a server.

Spectrum dispatch
service

Middleware component that encapsulates broker calls on the
server, provides directory services, enforces security, and
invokes backend Natural services.

Spectrum security
service

Component of the Construct Spectrum Administration
subsystem that controls access to application libraries, objects,
and methods.

Spectrum Service
Manager

Client tool supplied with Construct Spectrum that allows you
to specify which Spectrum services the client uses to
communicate with the server.

Spectrum service
settings

Collection of parameters used to configure a Spectrum service.

Spectrum web
application

Application created using the Construct Spectrum wizards and
add-ins. It allows users to access mainframe business functions
and data from a web browser.

Spectrum web
framework

Group of Visual Basic modules and classes that collaborate to
dynamically generate web pages.

Status bar Area that displays status information about a selected item,
application, or business object in a client/server application. It
contains sections for a message, status indicators, and the
current date and time. Status bars are also displayed at the
bottom of an MDI form.

steplib chain Hierarchy of Natural libraries that determines the location
from which modules are executed.

Sub Main
procedure

First Visual Basic procedure executed when you run a
Construct Spectrum application. Each Visual Basic
application has one Sub Main procedure.

subprogram
proxy

Natural subprogram called by a Spectrum dispatch service to
translate data formats between the client and a Natural
subprogram on the server. Each subprogram requires a
subprogram proxy, which allows Construct Spectrum to
provide a common interface to any subprogram.

Term Definition (continued)
– 267 –

Construct Spectrum SDK Reference __
A

super model Model that generates multiple components of a Construct
Spectrum client/server or web application. Using a minimum
number of input parameters, a super model determines the
specifications for all models required to generate individual
components of a package. See also package, page 265.

target module See target subprogram, page 268.

target object See target subprogram, page 268.

target subprogram Any Natural subprogram.

template parser Class used to parse HTML or other templates.

toolbar Bar that provides quick access to commonly used commands
in an application. A user clicks the appropriate toolbar button
to perform the action it represents. Any action that can be
performed from a toolbar can also be invoked from a menu.

toolbar button Icon on a toolbar that allows users to perform an action.

toolkit Set of related and reusable classes that provide general-
purpose functionality. An application incorporates classes
from one or more toolkits.

Toolkits, or software development kits (SDKs), emphasize
code reuse and are the object-oriented equivalent of subroutine
libraries. For example, a toolkit can be a collection of classes
for lists, associative tables, or stacks.

trace options Options that specify how to trace messages sent between the
client and server.

type library Library containing definitions for all objects, methods, and
properties exposed by the OLE automation server. See also
object library, page 264.

upload data Transfer modules from the client to the server.

variant Visual Basic term identifying a late-binding data type.
Variants allow Construct Spectrum subroutines or functions to
accept different types of data. The exact type is determined
when they receive the value in Visual Basic.

VB-Client-Server-
Super-Model model

Model that generates all modules required for a fully
functional client/server application. The super model can
generate all modules required for maintenance and browse
services for up to 12 business objects at a time. See also super
model, page 268.

Term Definition (continued)
– 268 –

___ Appendix A: Glossary
A

verification
rules

Predict-defined business rules that are implemented in the
object subprogram on the server and the maintenance object on
the client. They also provide default values for derived fields
represented by GUI controls, such as check boxes, option
buttons, or drop-down combo boxes.

You can use verification rules to force users to make a
selection based on one or more choices. For example, if an
application has an input field for the state name, you can attach
a verification rule to the field in Predict so that only valid state
names are accepted.

Visual Basic
browse object

Visual Basic class that configures an instance of a browse base
class. This class delivers information about the columns and
keys supported by the browse subprogram to the client
framework, which configures and displays the browse dialog
at runtime. See also Visual Basic business object, page 269.

Visual Basic
business object

Conceptual browse or maintenance object comprised of class
modules or objects with a domain on the client. It implements
business rules and encapsulates communication with the
Spectrum Dispatch Client (SDC).

Visual Basic
maintenance object

Visual Basic class instantiated by a maintenance dialog to:
• encapsulate calls to the SDC
• implement validation in the maintenance dialog

See also Visual Basic business object above.

Web Super wizard Construct Spectrum Add-In to Visual Basic that generates
multiple HTML templates and page handlers for a web
application.

web class Visual Basic class that responds to requests for a web page
(ASP requests).

web application ASP ASP (active server page) script used to instantiate a Spectrum
web application.

wildcard Character or symbol that qualifies a selection, such as “*”, “<”,
or “>”. For example, using a value followed by an asterisk (*)
indicates a range of file names beginning with that value. To
list all modules that begin with “Maint”, enter “Maint*” as the
selection criteria.

Term Definition (continued)
– 269 –

Construct Spectrum SDK Reference __
A

XML extract Extract information from Predict and other sources, which is
stored on the client as metadata in XML format. This includes
information about business objects, as well as the formatting
used by wizards to build application components. See also
metadata, page 263.

Term Definition (continued)
– 270 –

__
B

APPENDIX B: UTILITIES

This chapter describes the utility subprograms supplied with the Spectrum Administra-
tion subsystem. To invoke these subprograms, you must be in the SYSSPEC library.

The following topics are covered:

• Response Subprogram, page 272

• Spectrum Interface Subprogram, page 278

• Conversation Factory Utility, page 289

• Character Translation Subprogram, page 290

• Multi-Tasking Verification Utility, page 291

• Log Utilities, page 292
– 271 –

Construct Spectrum SDK Reference __
B

Response Subprogram
The SPUREPLY subprogram is mainly used by servers to send responses back to a cli-
ent. The response can be defined as a SYSERR message or a hardcoded text string.

Features and Benefits
SPUREPLY has the following benefits and features:

• Defines a standard protocol for exchanging messages.

• Enables messages to be multilingual if you define them in SYSERR.

• Performs message substitution of :1::2::3: within SYSERR messages.

• Can send other information in addition to a message.

Response Length Limitation
The maximum supported response length is 5000 bytes.

Supported Methods
SPUREPLY supports the following methods (defined in SPLREPLY). One of these
methods must be assigned to the SPAREPLY.METHOD parameter before calling
SPUREPLY:

Method Description

SEND-REPLY Sends a single message reply, with the End of
Conversation option.

SEND-WITHOUT-EOC Sends a multi-part reply. Use the SEND-REPLY method
to send the last message of the reply.

LOOKUP-MESSAGE Looks up the error message text, but does not send it.

SEND-MESSAGE-ONLY Sends the message text without the standard protocol
information.

SEND-MESSAGE-ONLY-
WITHOUT-EOC

Same as SEND-MESSAGE-ONLY, but does not include
End of Conversation option.
– 272 –

___ Appendix B: Utilities
B

Message Protocol
All messages sent to the client use the following protocol:

Call Interface
SPUREPLY supports the following interface:

 PARAMETER USING SPAREPLY /* Specific parameters
 PARAMETER /* The message portion of the send buffer
 01 SPAREPM
 02 INPUT-OUTPUTS
 03 BUFFER-LENGTH (I2)
 03 MSG-BUFFER (A1/1:V)
 PARAMETER USING SPAETB /* Parameters to SPUETB
 PARAMETER USING ETBCB /* Standard broker control block
 PARAMETER USING CDPDA-M /* Standard message area

These data areas are described in the following sections.

Message Protocol

SIGNATURE(A6) MSG111 constant. Defines the structure of the send buffer.

RESPONSE-
CODE(N4)

Response code passed to SPUREPLY in SPAREPLY.
Successful responses use a response code of zero. Other
predefined response codes are:
• 001 (Replica ID was not matched)
• 9999 (Natural runtime error)

REPLICA-ID(A32) Replica ID passed from SPAETB.

SPECTRUM-
SERVICE(A32)

Passed from SPAETB.

SYSERR-
LIBRARY(A8)

Name of the SYSERR library containing the message.

MSG-NR(N4) Number of the SYSERR message.

MESSAGE(A1/1:V) Message area of send buffer. In most cases, this area contains
a message looked up in SYSERR by SPUREPLY. Additional
information can also be passed in this area.
– 273 –

Construct Spectrum SDK Reference __
B

SPAREPLY Data Area
This data area is passed to SPUREPLY. It contains the following data:

SPAREPLY Data Area

The fields in this data area are:

Parameter SPAREPLY Library S441 DBID 17 FNR 60
Command > +
I T L Name F Leng Index/Init/EM/Name/Comment
Top - -------------------------------- - ---- ---------------------------------
 *
 *
 * Data Area Name: SPAREPLY Function
 * Created on....: Jun 12, 02 ========
 * Created by....: SAG This data area is passed to
 * SPUREPLY which is used to
 * send a reply back to a client.
 *
 * The reply structure is
 * defined in SPLREP.
 1 SPAREPLY
 2 INPUTS
 3 METHOD I 1 /* See SPLREPLY
 3 RESPONSE-CODE N 4 /* This response, use zero for
 * /* successful response.
 3 SYSERR-INFO
 4 MSG-NR N 4 /* SYSERR Message number
 4 SYSERR-LIBRARY A 8 /* Defaults to SYSSPEC
 4 MSG-DATA A 32 (1:3) /* Subs. values
 * /* May contain *NNNN references
 3 TRANSLATE L /* Translate character set. If
 * /* currently EBCDIC, message
 * /* will be translated to ASCII
 * /* and vise-versa.
 3 EMBEDDED-MSG-INFO /* This structure is only used
 * /* when the message to be looked
 * /* up is only a portion of the
 * /* data to be sent. In this case
 * /* you must indicate where the
 * /* message is in the send buffer
 4 MSG-START I 2 /* Byte location of start of msg
 4 MSG-LENGTH I 2 /* Total length of message
 /* portion

Field Name Description

METHOD (I1) Indicates whether you want to perform a send with
EOC, send without EOC, or just look up the message
text. Assign a value from SPLREPLY.

RESPONSE-CODE (N4) Contains the response code value sent to the client.

MSG-NR (N4) If a message is looked up in SYSERR, contains the
message number.
– 274 –

___ Appendix B: Utilities
B

SYSERR-LIBRARY (A8) Name of the library in which to look up messages. By
default, all messages are looked up in the SYSSPEC
library. If this is not true, specify the library name.

MSG-DATA (A32/1:3) Contains up to three values for substitution into the
message. These values replace the :1::2::3:
placeholders in the SYSERR message. Substitution
values can be looked up in SYSERR by specifying
message data in *nnnn format.

TRANSLATE (L) Indicates whether the message is translated (from
EBCDIC to ASCII or vice versa).

MSG-START (I2) If the message retrieved from SYSERR represents
only a portion of the data to be sent, indicates the
starting position of the message portion of the send
buffer.

MSG-LENGTH (I2) Indicates the length of the message portion of the send
buffer. This field is only required when MSG-START
is assigned.

Field Name Description (continued)
– 275 –

Construct Spectrum SDK Reference __
B

SPAREPM Data Area
This data area is an example of a standard message area that can be passed to SPURE-
PLY. Use SPAREPM to send messages up to 250 characters in length. After SYSERR
messages are looked up, the resulting message text is returned in this parameter. The
values in SPAREPLY.MSG-START and SPAREPLY.MSG-LENGTH determine
where the message is assigned. If these values are zero, the message is returned, starting
at position 1 and continuing to SPAREPM.BUFFER-LENGTH.

The SPAREPM data area contains the following fields:

SPAREPM Data Area

To send information other than a standard message, copy SPAREPM and define the
fields you want to send (up to 5000 bytes). To reflect the size of data to be sent, assign
the BUFFER-LENGTH field.

cal SPAREPM Library S441 DBID 17 FNR 60
Command > +
I T L Name F Leng Index/Init/EM/Name/Comment
All - -------------------------------- - ---- ---------------------------------
 * Data Area Name: SPAREPM Function
 * Created on....: Jun 12, 02 ========
 * Created by....: SAG This data area can be used as
 * the second parameter to
 * SPUREPLY. When a message number
 * is passed to SPUREPLY, the
 * message text is returned in
 * this parameter.
 * Alternatively, the message to
 * be sent can be passed to
 * SPUREPLY using this parameter.
 1 SPAREPM
 2 INPUT-OUTPUTS
 3 BUFFER-LENGTH I 2 INIT<250>
 3 MSG-BUFFER A 1 (1:250)
 R 3 MSG-BUFFER
 4 MSG-STRING A 250
----- Current Source Size: 1201 Free: 100104 ------------------- S 17 L 1
– 276 –

___ Appendix B: Utilities
B

Example of a call

Example of send buffer

/*
/* SYSSPEC/1001: Invalid request:1:sent to:2:expecting:3:
ASSIGN SPAREPLY.MSG-NR = 1001
ASSIGN SPAREPLY.MSG-DATA(1) = #COMMAND
ASSIGN SPAREPLY.MSG-DATA(2) = *PROGRAM
ASSIGN SPAREPLY.MSG-DATA(3) = '''CREATE'''
ASSIGN SPAREPLY.RESPONSE-CODE = 1 /* Invalid command
PERFORM SEND-MESSAGE
*
**
DEFINE SUBROUTINE SEND-MESSAGE
**
*
 IF #I-AM-ASCII NE #CLIENT-IS-ASCII THEN
 ASSIGN SPAREPLY.TRANSLATE = TRUE
 END-IF
 ASSIGN SPAREPLY.METHOD = SPLREPLY.SEND-REPLY /* Send with eoc
 CALLNAT 'SPUREPLY' SPAREPLY
 SPAREPM
 SPAETB
 ETBCB
 MSG-INFO
END-SUBROUTINE /* SEND-MESSAGE

MSG1110001ATTACH-MANAGER--B0B218EC55E1AE01 AURORA-CONVERSATION FACTORY
SYSSPEC 1001Invalid request CMD SH sent to SPSCFACT expecting 'CREATE'

where:

MSG111 Is the message signature.

0001 Is the response code.

ATTACH-MANAGER--
B0B218EC55E1AE01

Is the server replica ID.

AURORA-CONVERSATION-FACTORY Is the Spectrum service.

SYSSPEC Is the name of the SYSERR library used.

1001 Is the SYSERR message number.

Invalid request CMD SH sent to
SPSCFACT expecting 'CREATE'

Is the message text.
– 277 –

Construct Spectrum SDK Reference __
B

Spectrum Interface Subprogram
Writing robust servers can be a complex task. There are many possible errors that can
occur, and ensuring that each error is handled in the proper way is very difficult. Some
errors are caused by resource shortages, so it is desirable to retry the call again after a
brief pause. Other errors are fatal and should result in the server shutting down. Still
other errors, like wait timeouts, are normal and expected.

To help simplify and standardize the task of writing servers, Construct Spectrum sup-
plies a subprogram that wraps the Broker ACI calls. This wrapper subprogram, called
SPUETB, handles many situations that have to be coded to make direct Broker calls.
To ensure that errors are handled and logged properly, use SPUETB for all broker calls.

Features and Benefits
The following sections contain a summary of the capabilities offered by SPUETB.

Broker Error Handling
Most Broker errors are handled internally by SPUETB. If the errors are due to resource
shortages, SPUETB pauses for two seconds and then tries the call again. The subpro-
gram continues to retry the call for up to 20 seconds.

When implementing server receive loops, SPUETB handles all wait timeouts (Broker
error 74) and returns to the receive state.

Fatal errors cause the server to shutdown if SPUETB is granted shutdown permission.

SPUETB can also handle message length errors and return a message to the sender in-
dicating that the message was too long.

Error Logging
All errors returned from Entire Broker are logged in the Spectrum Communication Log.
Use this log to help detect problems with your programs or environment.

Shutdown Requests
SPUETB responds to shutdown requests from Entire Broker. These requests can be ini-
tiated using the EntireX Broker Control Center.

Server Timeouts
Whenever the server has not received a message for the length of time specified on the
service record, the server shuts down.
– 278 –

___ Appendix B: Utilities
B

Command Handling
SPUETB registers for the CMD service and responds to all command requests. Com-
mand requests include the CMD CALLNAT command, which allows you to supply the
name of the subprogram call.

SPUETB Interface
SPUETB is called using the following interface:

DEFINE DATA
 PARAMETER USING SPAETB /* Specific Parameters
 PARAMETER USING ETBCB /* Standard broker control block
 PARAMETER
 01 SEND-BUFFER(A1/1:V)
 01 RECEIVE-BUFFER(A1/1:V)
 01 RESERVED-AREA(A1/1:V) /* Reserved for SPUETB use
 PARAMETER USING CDPDA-M /* Standard message area
END-DEFINE

As in a direct call to Entire Broker, the caller is responsible for filling in the Broker con-
trol block. Additionally, the caller can specify the degree of error handling and support
for common functions handled by SPUETB.

The data areas are described in the following sections.
– 279 –

Construct Spectrum SDK Reference __
B

Data Areas

SPAETB Data Area

Parameter SPAETB Library S441
Command > +
I T L Name F Leng Index/Init/EM/Name/Comment
Top - -------------------------------- - ---- ---------------------------------
 *
 *
 * Data Area Name: SPAETB Function
 * Created on....: May 05, 02 ========
 * Created by....: SAG This data area is passed to
 * SPUETB which is used to
 * encapsulate calls to Entire
 * Broker. Use SPLETB to assign
 * constant values.
 1 SPAETB
 2 FORCE-PDA A 1 (1:V) /* This field is only here
 * /* to force the caller to create
 * /* a separate LDA to call SPUETB
 * /* rather than using SPAETB.
 * /* This way, initial values can
 * /* be placed in the LDA so that
 * /* defaults get assigned.
2 INPUTS
 3 METHOD I 1 /* 0 = Normal call
 * /* See SPLETB for other methods
 3 ENCAPSULATED-FUNCTIONS /* Set desired functions ...
 4 SUPPORT-SERVER-COMMANDS L /* SPUETB will automatically
 * /* register a command service
 * /* whenever a regular service is
 * /* registered. CMD is used as
 * /* the broker service name.
 * /* SPUETB will handle all
 * /* command requests directly.
 4 ALTER-RECEIVE-SERVICE L /* Automatically change the
 * /* service name on receive to
 * /* an '*' to allow commands
 4 SHUTDOWN-PERMISSION L /* If true, SPUETB is allowed to
 * /* shutdown the server directly.
 * /* See SHUT-DOWN-REASONS
 4 SHUTDOWN-REASONS /* Set desired shutdown reasons:
 * /* only set after method 6
 5 EXPLICIT-SHUTDOWN L /* Shutdown request from BROKER
 * /* or from Spectrum console.
 5 TIMEOUT-REACHED L /* See TIMEOUT-HANDLING
 5 TERMINAL-ERROR L /* Non-recoverable broker error.
– 280 –

___ Appendix B: Utilities
B

SPAETB Data Area

 4 TIMEOUT-HANDLING I 4 /* 0 = Return all timeouts so
 * /* that caller can handle
 * /* >0= Reissue call for this
 * /* many seconds. Set to
 * /* max desired idle period.
 * /* -1= Reissue call indefinitely
 * /* -1 is normally used by
 * /* ATTACH servers which
 * /* should run forever.
 3 ERROR-HANDLING
 4 HANDLE-TRUNCATION-ERROR L /* SPUETB will respond to
 * /* ETB error 00200094. This
 /* won't be sent back to caller
 4 RESERVED A 8 /* Reserved for future.
 4 USE-SPECTRUM-ERROR-LOG L /* Log all errors on the Spec.
 * /* file. Warning, this will
 * /* cause an ET to be issued.
 4 WRITE-ERRORS-TO-CONSOLE L /* CALL 'CMWTO' with errors
 4 WRITE-ERRORS-TO-PRINT-FILE-0 L /* Write errors to Natural
 * /* print file 0
 4 MAX-RETRY-TIME I 2 /* Number of seconds to continue
 * /* to retry call in the event of
 * /* a Broker resource shortage.
 * /* Defaults to 20 seconds.
 4 MESSAGE-DATA /* These fields are used to
 * /* build helpful error messages
 * /* when broker calls fail.
 5 CALLING-PROGRAM A 8 /* Name of caller.
 5 SPECTRUM-SERVICE A 32 /* Name of spectrum service
 * /* if known.
 5 CALL-DESC A 32 /* Description of the call
 2 INPUT-OUTPUTS
 3 REPLICA-ID A 32 /* Assigned at first LOGON
 * /* do not adjust
 3 CLIENT-MODE L /* In this mode, errors need
 * /* not be logged and checks
 * /* for broker error cycles
 * /* are not performed.
 3 OPTION A 50 /* SPUETB option
 2 OUTPUTS
 3 RESULT I 1 /* See SPLETB
 * /* 0 = Normal request
 * /* 1 = Attach request
 * /* 2 = Command request
 * /* 3 = Timeout
 * /* 4 = Non-terminal error
 * /* 5 = Terminal error
 * /* 6 = Restarting after error.
– 281 –

Construct Spectrum SDK Reference __
B

The fields in the SPAETB data area are:

Field Name Description

FORCE-PDA (A1/1:V) Due to the number of input settings that must be
assigned before calling SPUETB, the preferred
method of assigning them is to use supplied LDAs,
initialized with common defaults settings. The
following LDAs are supplied:
• SPAETBC (used by Broker client programs)
• SPAETBS (used by Broker server programs)

METHOD (I1) Determines the type of processing performed by
SPUETB. Assign the method values using one of the
constants in SPLETB.METHODS.

SPLETB.NORMAL-CALL Used for all broker calls except LOGON,
REGISTER, DEREGISTER, and LOGOFF.

SPLETB.LOGON Uses the value of SPAETB.SPECTRUM-SERVICE
to look up the Broker ID, user ID, and corresponding
password with which to log on to Entire Broker. It
also executes the Broker Logon function.

SPLETB.REGISTER-
SERVER

Uses SPAETB.SPECTRUM-SERVICE to look up
the Broker ID, Server Class, Server Name, and
Service and uses these values to Register with Entire
Broker. If the SUPPORT-SERVER-COMMANDS
parameter is set to TRUE, this method also registers
an additional service, CMD, to accept commands.

SPLETB.SHUTDOWN-
SERVER

Invokes the Broker Deregister and Logoff functions.
It is used by servers only. Always issue a shutdown
request before ending server programs. Assign
SHUTDOWN-PERMISSION=TRUE if you want
SPUETB to perform a shutdown automatically.

SPLETB.LOG-SUPPLIED-
ERROR

Requests that an application error be logged by
SPUETB. The error must be passed in the MSG-
INFO.##MSG field of the CDPDA-M data area. The
message is logged to locations specified in the
SPAETB.ERROR-HANDLING structure.

SPLETB.LOG-Natural-
ERROR

Only called from ON ERROR blocks or error
transactions (assign to *ERROR-TA). Tells SPUETB
to log the last Natural error that occurred. The error is
logged to locations specified in the
SPAETB.ERROR-HANDLING structure.
– 282 –

___ Appendix B: Utilities
B

SPLETB.GET-SERVICE-
DEFAULTS

Assigns the following fields based on the values
established at the time of the initial LOGON method.
• ETBCB.BROKER-ID
• ETBCB.SERVER-CLASS
• ETBCB.SERVER-NAME ETBCB.SERVICE,
• ETBCB.USER-ID
• ETBCB.TOKEN
• ETBCB.SECURITY-TOKEN
• SPAETB.TIMEOUT-HANDLING
• SPAETB.SPECTRUM-SERVICE

SPLETB.LOGOFF Performs a Broker Logoff function. For other
methods, refer to SPLETB.

SUPPORT-SERVER-
COMMANDS (L)

Tells SPUETB to automatically support command
services such as PING, SHUTDOWN, etc. SPUETB
automatically registers a separate service using CMD
as the service name. All command requests are
handled by SPUETB; the caller need not code any
specific support for commands.

ALTER-RECEIVE-SERVICE
(L)

Used in conjunction with SUPPORT-SERVER-
COMMANDS. If this field is set to true, SPUETB
automatically changes the service name specified on
any receive function to an asterisk (*). This allows the
receive to be satisfied by either a request for the main
service or a request for the command service.

SHUTDOWN-PERMISSION
(L)

If true, SPUETB can shutdown the current program.
Normally, it is only set for server programs. To
determine which events allow SPUETB to shutdown
the running server, assign the fields in
SPAETB.SHUTDOWN. SPUETB always logs any
errors prior to shutting down.

EXPLICIT-SHUTDOWN
(L)

Allows SPUETB to shutdown the server as a result of
an explicit SHUTDOWN command.

TIMEOUT-REACHED (L) Allows SPUETB to shutdown the server when the
server timeout value is reached. This timeout value is
passed in the TIMEOUT-HANDLING parameter and
defaulted from the Server Timeout field on the
Spectrum service record.

TERMINAL-ERROR (L) Allows SPUETB to shutdown the server in response
to a fatal Broker error.

Field Name Description (continued)
– 283 –

Construct Spectrum SDK Reference __
B

TIMEOUT-HANDLING (I4) Tells SPUETB how to handle timeouts when
executing Broker RECEIVE functions. Can be one of
the following:
• -1

Execute forever (use SPLETB.NO-TIME-LIMIT)
to assign this value.

• 0
Return to the caller after the first receive timeout.

• >0
Execute for this many seconds, then either return
to the caller or execute shutdown processing
(based on SHUTDOWN-PERMISION and
TIMEOUT-REACHED parameters).

This field is derived from the Server Timeout value
on the Spectrum service record. If no server timeout
is specified, the following defaults are used:
• Services without Attach Servers -1
• Services with Attach Servers 1200 (= 20 minutes)

RESERVED (A8) Reserved for future use.

USE-SPECTRUM-ERROR-
LOG (L)

Logs all errors to the Spectrum log file.

WRITE-ERRORS-TO-
CONSOLE (L)

Writes all errors to the operator console.

WRITE-ERRORS-TO-
PRINT-FILE 0(L)

Writes all errors to Print file 0.

MAX-RETRY-TIME (I2) Indicates the length of time to continue trying to
execute a Broker call in the event of a Broker resource
shortage. This defaults to 20 seconds.

CALLING-PROGRAM
(A8)

Identifies the caller of SPUETB. This name is used
when logging error messages.

SPECTRUM-SERVICE
(A32)

To use the Logon and Register methods of SPUETB,
specify the name of the Spectrum service in this field.
Also used when writing error messages.

CALL-DESC (A32) Free-format description of the call used when logging
error messages.

REPLICA-ID(A32) Replica id assigned to the server (output field only).

Field Name Description (continued)
– 284 –

___ Appendix B: Utilities
B

ETBCB Data Area
ETBCB is a standard data area representing the fields that must be passed to Entire Bro-
ker when using the Broker ACI. The calling program should use ETBCB12 or
ETBCB13, depending on the version of the Broker stub in use.

SEND-BUFFER
The send buffer is used in conjunction with the Broker Send function. The size of this
buffer must be greater than or equal to the value of ETBCB.SEND-LEN.

RECEIVE-BUFFER
The receive buffer is used in conjunction with the Broker Receive function or blocked
Sends. The size of this buffer must be greater than or equal to the value of ETBCB.RE-
CEIVE-LEN.

CLIENT-MODE(L) If this flag is set, SPUETB does not log errors and
checks for broker error cycles are not performed.

RESULT (I1) Interpreted after the call to determine the results of
the call. The SPLETB data area defines the following
constants to check the results:
• NORMAL-REQUEST

Broker call completed normally.
• ATTACH-REQUEST

Broker call resulted in an Attach request. Only
returned to Attach Services.

• TIMEOUT
Receive timeout was reached and shutdown
permission for timeouts was not granted to
SPUETB.

• NON-TERMINAL-ERROR
Non-terminal broker error occurred. This error is
automatically logged by SPUETB. See
ETBCB.ERROR-CODE.

• TERMINAL-ERROR
Terminal Broker error occurred, but shutdown
permission was not granted to SPUETB. The error
is automatically logged.

Field Name Description (continued)
– 285 –

Construct Spectrum SDK Reference __
B

RESERVED-AREA
This pass area is reserved for future use. Define and pass the SPAETBP.NOT-USED(*)
parameter in place of this parameter.

CDPDA-M
This is a standard message area. Whenever SPUETB encounters a non-recoverable er-
ror, it returns with the error text in MSG-INFO.##MSG and MSG-INFO.##RETURN-
CODE is assigned “E”.

Using SPUETB
For an example of using SPUETB, refer to the SPSTIMS Timestamp Server example.
If you need to do your own character set translation (because your messages contain a
mixture of printable and binary data), refer to SPSTIMS2.

CMD TRACE
The TRACE command enables and disables tracing of a running server. This feature is
used in conjunction with the CSUDEBI utility. The TRACE command accepts a RID
to target the command to a specific replica.

There are two separate forms of the TRACE command; the one you choose depends on
whether you want to enable or disable tracing.

� To enable tracing:

1 Use the CMD TRACE LOCATION=n [options] command.

� To disable tracing:

1 Use the CMD TRACE OFF command.
– 286 –

___ Appendix B: Utilities
B

Valid Keywords

Valid trace locations are defined in the CSLDEBUG local data area in SYSCST. The
following table shows the trace keywords:

Example of enabling tracing

CMD TRACE
RID=BBCB0B5A1BD5AF9F201FACB0B5A14D5AF9F201,LOCATION=10,QHANDLE=‘BKR045
,SPSCFACT,AAC
B0B5A1BD5AF9F201FACB0B5A14D5AF9F201,0000000000000000000000000000000000
000000000000000000000000000000,0000000000000220’,ERROR-
TRIGGER=‘SPUETB,5420,NAT0082’,FILTER-MASK=1000110000000010000
00010000000110000000000000000000000000000000000000,FILTER-
PROGRAM=‘SPU*,SP?SEC’

Keyword Description

QHANDLE A valid queue handle is required when setting the message
location to 10. This is a quoted value consisting:

'bkrid, user-ID, token, (unpacked) security-token,
conv-ID'

ERROR-TRIGGER Forces a runtime error at a specified point within the running
server. Errors can only be triggered on lines that are currently
being traced. The syntax of the value assigned to this field is:

Program,Line,NATnnnn,Skip'

where:
• Program is the name of the program where the runtime

error is to be triggered.
• Line is the line number where the error is to be triggered.
• NATnnnn is the error to be triggered.
• Skip is used if the error is not to be triggered on the next

execution of the statement, but rather after executing the
statement this many times.

FILTER-MASK A100 string of 0 and 1 values. “1” is used to represent
statements that are to be traced. Each mask character is
related to a constant in the SPLTRACE local data area.

FILTER-PROGRAM List of up to five programs (in quotes and separated by
commas) used to limit the programs that produce trace
output. You can use special characters in the program name
to serve as pattern-matching characters. For details, refer to
the PATTERN option for the Natural EXAMINE statement.
– 287 –

Construct Spectrum SDK Reference __
B

Trace Response
The trace response is normally a confirmation message indicating whether the trace re-
quest was successful. The response uses the SPUREPLY protocol (MSG111).

Test the Trace Facility
To test the trace functions, use the CMD CALLNAT SPUTRTST command.

CMD CALLNAT
It is possible to CALLNAT any subprogram, provided the subprogram implements a
generic interface. This interface is defined as follows:

DEFINE DATA
 PARAMETER USING SPACALLN /* Standard callnat parameters
 PARAMETER USING SPAREPLY /* Reply message parameters
 PARAMETER
 01 RECEIVE-SEND-BUFFER(A1/1:15000)
END-DEFINE

The CALLNAT command takes the form:

CMD CALLNAT subpname parameter_string

For an example of how to write a new CALLNAT interface subprogram, refer to the
SPUCMDT subprogram.

where:

Subpname Is the name of the subprogram you want to CALLNAT.

parameter_string Is any set of characters to be passed to the specified subprogram
using the RECEIVE-SEND-BUFFER.
– 288 –

___ Appendix B: Utilities
B

Conversation Factory Utility
Construct Spectrum includes a facility called a Conversation Factory. This facility
works in conjunction with high-level callnat and message queue APIs to facilitate the
simple transfer of data between two platforms. The benefits offered by the Conversation
Factory and supporting APIs include:

• Allow communication between a client and server without knowledge of Broker ACI.

• Allow a conversation to be established between two processes, each acting as clients.

• Support multiple concurrent conversations between the same two participants. For ex-
ample, the Construct generate server listens for specifications on one conversation and
cancels requests on another.

• Are used in conjunction with servers launched from the client to establish a conversa-
tion between the client who launched a service and the service itself.

On the server, the Conversation Factory consists of the following four subprograms:

For an example of how to use the Conversation Factory APIs, refer to the SQEXAMPL
subprogram.

Subprogram Description

SQUOPEN Opens a new conversation.

SQUSEND Sends information from one end of the conversation to the other.

SQURECV Receives information.

SQUCLOSE Closes the conversation.
– 289 –

Construct Spectrum SDK Reference __
B

Character Translation Subprogram
When writing your own servers, it is sometimes necessary to perform character-set
translation. The preferred approach to character translation is to use the translation rou-
tines assigned to the Broker Service in the Broker Attribute File. However, sometimes
you may want to send a message that contains a mixture of binary and printable data
where only a portion of the message is to be translated. Use the SPUTLATE subpro-
gram for this purpose.

SPUTLATE allows you to pass in a string, along with an array of character positions to
be translated. It is supplied in source form. For an example of calling SPUTLATE, refer
to SPSTIMS2.

Determine a Character Set
Sometimes a server receives a message it cannot interpret. Normally, the server returns
a reply to the sender indicating that the message is invalid. If the server performs its own
translation, it needs to know the character set of the received message so that the reply
can be sent back in the client’s character set. SPUASCII helps determine whether a
string of characters is ASCII or EBCDIC format. For an example of calling SPUASCII,
refer to SPSTIMS2.
– 290 –

___ Appendix B: Utilities
B

Multi-Tasking Verification Utility
Use this utility to verify that ADALNK has been configured to be re-entrant and that
the Natural batch nucleus that uses it is also re-entrant. A re-entrant Natural nucleus is
required to run Spectrum services in a batch multi-tasking environment.

To start multiple Natural subtasks, use JCL to run the supplied Natural module,
TESTTASK, in batch (as documented in Step 2: Verify Natural Subtask Support,
page 39, Construct Spectrum and SDK Installation Guide for Mainframes). If your Nat-
ural nucleus is re-entrant, TESTTASK will successfully start Natural subtask sessions
that will execute the TESTSTSK program, which will then write trace information to
workfile 1 showing the execution status of the subtasks. Otherwise, the job that runs
TESTTASK will not end and will have to be manually cancelled.
– 291 –

Construct Spectrum SDK Reference __
B

Log Utilities
Construct Spectrum supplies several utilities for archiving and deleting log data. Most
of the parameters apply to all log archive utilities.

Spectrum Log Utilities
The following Spectrum log utilities are supplied with Construct Spectrum:

Utility Description

BSBLARCP Allows the Spectrum Log data to be archived to a work file and
optionally deleted from the Spectrum Log based on a date. It
also generates a log record of the archive process.

This utility has the following input fields:

Input End Date Indicates the last LOG date to be archived.

Full Report Indicates which details to display.
• To display full details of all data being logged, enter “F”

(full).
• To show only the main log information, enter “B” (brief).

Delete After
Archive

Indicates whether to delete log records after they are archived.

BSBLRESP Restores data to the Spectrum Log file. It uses the entire log
data created by the BSBLARCP utility. It also generates a log
record of the restore process.

This utility has the following input field:

Full Report Indicates which details to display.
• To display full details of all data being logged, enter “F”

(full).
• To show only the main log information, enter “B” (brief).
– 292 –

___ Appendix B: Utilities
B

Construct Spectrum Control Record Log Utilities
The following Control record utilities are supplied with Construct Spectrum:

Utility Description

BSCTARCP Allows the Spectrum Control Record log data to be archived to
a work file and, optionally, deleted from the Spectrum Control
Record log based on a date. It also generates a log record of the
archive process.

This utility has the following input fields:

Input End Date Indicates the last LOG date to be archived.

Full Report Indicates which details to display.
• To display full details of all data being logged, enter “F”

(full).
• To show only the main log information, enter “B” (brief).

Delete After
Archive

Indicates whether to delete log records after they are archived.

BSCTRESP Restores data to the Spectrum Control Record log file. It uses
the entire log data created by the BSCTARCP utility. It also
generates a log record of the restore process.

This utility has the following input field:

Full Report Indicates which details to display.
• To display full details of all data being logged, enter “F”

(full).
• To show only the main log information, enter “B” (brief).
– 293 –

Construct Spectrum SDK Reference __
B

Domain Log Utilities
The following domain log utilities are supplied with Construct Spectrum:

Utility Description

BSDOARCP Allows the Domain log data to be archived to a work file and,
optionally, deleted from the Domain log based on a date. It also
generates a log record of the archive process.

This utility has the following input fields:

Input End Date Indicates the last LOG date to be archived.

Full Report Indicates which details to display.
• To display full details of all data being logged, enter “F”

(full).
• To show only the main log information, enter “B” (brief).

Delete After
Archive

Indicates whether to delete log records after they are archived.

BSDORESP Restores data to the Domain log file. It uses the entire log data
created by the BSDOARCP utility. It also generates a log
record of the restore process.

This utility has the following input field:

Full Report Indicates which details to display.
• To display full details of all data being logged, enter “F”

(full).
• To show only the main log information, enter “B” (brief).
– 294 –

___ Appendix B: Utilities
B

Spectrum Group Log Utilities
The following group log utilities are supplied with Construct Spectrum:

Utility Description

BSGRARCP Allows the Spectrum Group log data to be archived to a work
file and, optionally, deleted from the Spectrum Group log,
based on a date. It also generates a log record of the archive
process.

This utility has the following input fields:

Input End Date Indicates the last LOG date to be archived.

Full Report Indicates which details to display.
• To display full details of all data being logged, enter “F”

(full).
• To show only the main log information, enter “B” (brief).

Delete After
Archive

Indicates whether to delete log records after they are archived.

BSGRRESP Restores data to the Spectrum Group log file. It uses the entire
log data created by the BSGRARCP utility. It also generates a
log record of the restore process.

This utility has the following input field:

Full Report Indicates which details to display.
• To display full details of all data being logged, enter “F”

(full).
• To show only the main log information, enter “B” (brief).
– 295 –

Construct Spectrum SDK Reference __
B

Application Service Definition Log Utilities
The following Application Service Definition utilities are supplied with Construct
Spectrum:

Utility Description

BSIFARCP Allows the Application Service Definition log data to be
archived to a work file and, optionally, deleted from the
Application Service Definition log based on a date. It also
generates a log record of the archive process.

This utility has the following input fields:

Report type Indicates which report type to display.
• To include information related to the interface and method

data, enter “F” (full).
• To display only the log for the application service header

information, enter “B” (brief).

Delete After
Archive

Indicates whether to delete log records after they are archived.

BSIFRESP Restores data to the Application Service Definition log file. It
uses the entire log data created by the BSIFARCP utility. It
also generates a log record of the restoration process.

This utility has the following input field:

Report type Indicates which report type to display.
• To include information related to the interface and method

data, enter “F” (full).
• To display only the log for the application service header

information, enter “B” (brief).
– 296 –

___ Appendix B: Utilities
B

Spectrum Steplib Log Utilities
The following utilities are supplied with Construct Spectrum:

Utility Description

BSSDARCP Allows the Spectrum Steplib log data to be archived to a work
file and, optionally, deleted from the Spectrum Steplib log
based on a date. It also generates a log record of the archive
process.

This utility has the following input fields:

Input End Date Indicates the last LOG date to be archived.

Full Report Indicates which details to display.
• To display full details of all data being logged, enter “F”

(full).
• To show only the main log information, enter “B” (brief).

Delete After
Archive

Indicates whether to delete log records after they are archived.

BSSDRESP Restores data to the Broker Steplib log file. It uses the entire
log data created by the BSSDARCP utility. It also generates a
log record of the restore process.

This utility has the following input field:

Full Report Indicates which details to display.
• To display full details of all data being logged, enter “F”

(full).
• To show only the main log information, enter “B” (brief).
– 297 –

Construct Spectrum SDK Reference __
B

User and Group Log Utilities
The following utilities are supplied with Construct Spectrum:

Utility Description

BSUSARCP Allows the User and Group log data to be archived to a work
file and, optionally, deleted from the User and Group log based
on a date. It also generates a log record of the archive process.

This utility has the following input fields:

Report type Indicates which report type to display.
• To include information related to the interface and method

data, enter “F” (full).
• To display only the log for the application service header

information, enter “B” (brief).

Delete After
Archive

Indicates whether to delete log records after they are archived.

BSUSRESP Restores data to the User and Group log file. It uses the entire
log data created by the BSUSARCP utility. It also generates a
log record of the restore process.

This utility has the following input field:

Report type Indicates which report type to display.
• To include information related to the interface and method

data, enter “F” (full).
• To display only the log for the application service header

information, enter “B” (brief).
– 298 –

INDEX

Numerics
1:V fields

example of a PDA, 233
example of calling the Allocate method,
233
example of code to specify an array, 233
example of code to specify number of
occurrences, 233
example of instantiating the PDA, 233
example of obtaining the bounds of an
array, 234
example of passing an array, 234
example of using the same data area, 234

1:V overrides
Edit 1

V Overrides window, 108
1:V variables

Subprogram proxies
1:V variable considerations, 108

A
ABO interface

customizing, 98
ABO project

components, 91
creating, 87

ABO wizard
using, 92

Active server page (ASP) script
definition of, 255

ActiveX business object (ABO)
definition of, 255
with Microsoft IIS, 35

ActiveX DLL
definition of, 255

Adding
methods

application service definitions, 113
user exits

Subprogram-Proxy model, 106, 109
Altered characters

Translations program, 181
Application library

definition of, 255
Application objects

troubleshooting, 185
Application service definition

definition of, 255
Application service definitions

accessing, 112
adding a method, 113
Maintain Application Service
Definitions panel, 112
methods, 111

Application services
creating and selecting server
components, 236
definition of, 255
external parameters, 237
global data areas, 236
parameter data areas, 237
subprogram behavior, 237
subprogram interface, 236
terminal I/O, 236
timing issues, 237

Applications
client/server

deploying, 191
Construct Spectrum

client/server, 28
web, 28

creating without using client framework
setting up server components, 236
– 299 –

Construct Spectrum SDK Reference ___
Architecture
Construct Spectrum

diagram, 29
definition of, 255

ASCII character set
translation of, 31

B
BDT class

definition of, 256
BDT controller

calling conversion routines, 126
convert from display, 128
convert to display, 127
converting in-place, 128
creating sample values, 129

error information properties, 131
ErrorCode, 131
ErrorLen, 131
ErrorMsg, 131
ErrorPos, 131
example of code, 131

syntax example, 125
using Natural formats, 130

BDT controller class
definition of, 256

BDT controller object
definition of, 256

BDT modifier
definition of, 256

BDT procedure
definition of, 256

BDT_DATE
Predict keyword, 137

BDTs (business data types)
overview, 122

Block handling
default methods, 116
overriding, 116
specifying on the server, 118

Broker ACI calls
wrapping, 278

Browse command handler
definition of, 255

Browse data cache
definition of, 255

Browse dialog
definition of, 256

Browse process
definition of, 256

Browse subprogram proxy
number of occurrences returned, 108
specifying number of occurrences, 106

BSBLARCP
log utility, 292

BSBLRESP
log utility, 292

BSCTARCP
log utility

Control record, 293
BSCTRESP

log utility
Control record, 293

BSDOARCP
log utility

domain, 294
BSDORESP

log utility
domain, 294

BSGRARCP
log utility

group, 295
BSGRRESP

log utility
group, 295

BSIFARCP
log utility

Application Service Definition, 296
BSIFRESP

log utility
Application Service Definition, 296

BSSDARCP
log utility

steplib, 297
BSSDRESP

log utility
steplib, 297

BSUSARCP
log utility

user and group, 298
– 300 –

___ Index
BSUSRESP
log utility

user and group, 298
Business data type (BDT)

definition of, 256
Business data type (BDT) objects

BDTController, 141
BDTConversion, 141
diagram of properties and methods, 142

Business data types
setting up in Predict, 40

Business data types (BDTs)
benefits of using, 123
client framework, 124–125
composition

conversion routine, 124
modifiers, 124
name, 124

creating
modifiers, 138
name, 138
Natural formats supported, 138
returning appropriate variant types,
139

customizing and creating, 138
handling runtime errors, 141
one conversion routine with multiple
BDTs, 148
overriding, 149
overview, 122
placing the conversion routine, 148
referencing

in your application, 149
Predict, 150

registering, 145
example of code, 145

retrieving error information, 149
supplied with Construct Spectrum

Alpha, 133
Boolean, 133
Currency, 135
Date, 136
Numeric, 134
Time, 134

used by client framework
diagram, 126

using modifiers, 129
Visual Basic, 123

diagram, 123

Business object
definition of, 257
setting up in Predict, 42

Business-Object-Super-Model
before using, 73

application environment, 75
default values in Predict, 73
model defaults, 73
naming conventions, 74

generating packages, 76
general package parameters, 78
specific package parameters, 79
standard parameters, 77

overview, 72
when to use, 72

Business-Object-Super-Model wizard
definition of, 257

C
CallNat method

syntax, 220
CALLNAT simulation

Spectrum Dispatch Client, 33
CallSystem method

syntax, 221
Cardinality

definition of, 257
Character set

determining, 290
Character UI

on mainframe server, 30
Checklists

application creation, 38
Child model

definition of, 257
Client applications

definition of, 257
developing

code to call subprogram, 252
creating the user interface, 251
running applications, 253

Client calls
simulate for debugging, 175

Client framework
definition of, 257
– 301 –

Construct Spectrum SDK Reference ___
Client/Server application
creating using Construct Spectrum tools,
17
creating without Construct Spectrum, 17

Code
preserving customizations to generated
code, 58
protecting

using implied user exits, 58
using the cst

PRESERVE tag, 58
Code block

definition of, 257
Command block

definition of, 257
Command handler list

definition of, 258
Command handlers

definition of, 257
Command ID

definition of, 258
Communication errors

handling, 162
possible origins, 162
retrieving information, 163
severe, 163

Complex redefine
definition of, 258

Components
framework

ABO project, 91
Compression

definition of, 258
Configuration editor

invoking, 50
Configuration Profiles tab

Configuration editor, 50
Construct Spectrum

courses, 20
definition of, 258
glossary of terms, 255

Construct Spectrum Add-In
definition of, 258

Construct Spectrum Administration
subsystem

definition of, 258

Construct Spectrum applications
creating without using client framework

setting up server components, 236
Construct Spectrum SDK Reference

layout, 14
Conventions

used in this documentation, 18
Conversation Factory

transferring data between two platforms,
289

Conversion routines
creating, 143
handling errors, 131
properties and methods, 143, 154

Courses
Construct Spectrum, 20

Creating
applications, 195

assign values to fields in parameter
data areas, 195

example of code to write to data
areas, 195

check success of CALLNAT, 196
example of code to check CallNat,
196

create parameter data area instances,
195

example of code declaring
variables, 195
example of creating a data area, 195

use the CallNat method on the client,
196

example of code to use the CallNat
method, 196

domain for your application, 39
Customizing

ABO
using user exits, 100

properties generated for the ABO, 98

D
Data encryption/de-encryption

Construct Spectrum applications, 31
Data Sizes tab

Diagnostics window, 179
– 302 –

___ Index
Data translation, 31
system functions, 32

Database record
definition of, 258

DBID
definition of, 258

Debug data
Debug Library field, 173
generating, 167
writing to the source area

example of code in subprograms, 170
example of results from IF statement,
170
example of results without IF
statement, 171

Debugging
client/server applications, 162

list of error sources, 162
runtime errors, 167
traditional tools, 163–164

communication errors, 167
returning information, 32

Debugging tools
client/server

Diagnostics window, 177
Translations program, 181

definition of, 259
INPUT statement, 174
simulating client calls, 175
traditional

DISPLAY statements, 163
INPUT statements, 163
Natural Debugging facility, 163
WRITE statements, 163

Defaulting from Predict
business object description, 42
GUI controls, 40
hold field, 41
primary key, 41

DEFINE PRINTER statement
using, 170

Defining
domain for your application, 45
security for your application, 47
steplib chain for your application, 43

Dependent object
definition of, 259

Deploying
client/server applications, 191

collect files for installation, 191
create the executable file, 191
install the client application, 192
run the application, 192

Deployment
definition of, 259

Descriptions
defaulting for business objects, 42

Determining
character set, 290

Development environments
Construct Spectrum Add-Ins

Visual Basic, 26
Construct Spectrum Administration
subsystem, 24
Construct Spectrum options

Add-Ins menu, 26
Construct Windows interface, 25
creating a web application, 27
integrated tools, 23
using an HTML editor, 27

Development process
overview, 36

Diagnostics window
Data Sizes tab, 179
description, 177
Initialize Data tab, 180
Subprogram Proxy tab, 178
summary of diagnostic information, 177
using, 178

Dialog
definition of, 259

Dispatch service
definition of, 259

Dispatch service data
on mainframe server, 31

Dispatcher
definition of, 259

Dispatcher objects
troubleshooting, 186

Distributing
client/server applications, 191

collect files for installation, 191
create the executable file, 191
install the client application, 192
run the application, 192
– 303 –

Construct Spectrum SDK Reference ___
Documentation
related, 18

Domain
definition of, 259

Domains
defining, 45
defining security, 47

Double-byte character set (DBCS)
definition of, 259

Download data
definition of, 259

E
EBCDIC character set

translation of, 31
EDIT command

Natural
view generated debug members, 173

Enabling trace options in subprogram
proxy, 107
Encapsulation

definition of, 259
Encrypt and decrypt data

system functions, 32
Encryption

definition of, 259
Encryption/de-encryption of data

Construct Spectrum applications, 31
Entire Broker

encapsulation of calls, 33
on mainframe server, 31
on Windows platform, 33
with Microsoft IIS, 35

Entire Broker service settings
definition of, 260

Entire Broker stub
definition of, 260

Error categories
communication, 165
debugging client/server applications,
165
runtime, 165
Spectrum system messages, 165

Error handling
system functions, 32

Errors.bas
description, 91

ETBCB data area
description, 285

Event
definition of, 260

Externally-creatable object
definition of, 260

F
Field

definition of, 260
Field headings

setting up in Predict, 39
FieldRef property

diagram of creating two data areas, 231
diagram of fields defined as objects to
CallNat, 230
diagram of fields passed to CallNat, 228
diagram of using, 231
example, 231
example of code to pass individual
fields, 228
example of using the CUSTA Natural
data area, 232
example of Visual Basic code, 232
syntax, 230

File volume information
specifying in Predict, 42

FNR
definition of, 260

Foreign key
definition of, 260

Form
definition of, 260

Framework components
ABO project, 91

G
Generate

definition of, 260
Generated module

definition of, 261
– 304 –

___ Index
Generating
debug data, 167

saving parameter and debug data, 167
Generate Trace Code field, 172
package modules

Generation subsystem, 82
subprogram proxy, 105–106

Generation data cache
definition of, 261

Global data areas
application services, 236

Global settings
configuration profile, 50

Globals.bas
description, 91

Grid
definition of, 261

Grid control
definition of, 261

Group
definition of, 261

Grouping related business objects, 45
GUI

definition of, 261
GUI control override

definition of, 261
GUI controls

setting up in Predict, 40
GUI dialog

on Windows platform, 34

H
Hold field default

setting up in Predict, 41
Hook

definition of, 261
Host

definition of, 261
HTML fragment

definition of, 261
HTML template

definition of, 261
HTML Template wizard

definition of, 261
http request

definition of, 262

I
Initialize Data tab

Diagnostics window, 180
INPUT statement

use as debugging tool, 174
Instantiation

definition of, 262
Internationalization

definition of, 262
Internet/intranet

supported browsers, 35
Invoke Proxy function

accessing, 176
Invoke Proxy panel

description, 176
Invoking

Configuration editor, 50

J
Job control language (JCL)

definition of, 262

K
Keys

defaulting primary, 41
Keyword

definition of, 262
Knowledge

assumed, 14

L
Level 1 block optimization

description, 213
diagram of client and server as sender
and receiver, 215
directional attributes

example, 214
list of directional attributes, 213

Level 1 data block
definition of, 262

Level 1 data block optimization
definition of, 262

Libraries
adding to your steplib chain, 44
– 305 –

Construct Spectrum SDK Reference ___
Library image file (LIF)
definition of, 262

Library image files
simulated PDAs, 33

LIF definitions module
definition of, 262

LIFDefinitions.bas
description, 91

LIST command
Natural

view generated debug members, 173
Localization

definition of, 262
Log utilities

supplied with Construct Spectrum, 292
Lookups

definition of, 262

M
Maintain Domains Table panel

description, 46
Maintain Steplib Table panel

description, 44
Maintain User Table panel

accessing, 173
Maintenance dialog

definition of, 262
Maintenance subprogram proxy

level 1 blocks sent for default methods,
116

Mapper function
description, 130

MDI child
definition of, 263

MDI frame
definition of, 263

MDI parent
definition of, 263

Menu
definition of, 263

Menu bar
definition of, 263

Message handling
system functions, 32

Message protocol
MESSAGE(A1), 273
MSG-NR(N4), 273
REPLICA-ID(A32), 273
RESPONSE-CODE(N4), 273
SIGNATURE(A6), 273
SPECTRUM-SERVICE(A32), 273
SYSERR-LIBRARY(A8), 273

Metadata
definition of, 263

Method
definition of, 263

Methods
Abort, 224
adding, 113

application service definitions, 113
updating application service
definitions, 113
updating LIFs, 114

Allocate, 201
Commit, 224
GetField, 204
Initialize, 201
Reset, 205
SetField, 205
StartTransaction, 224

Middleware
relationship with Construct Spectrum,
22

Model
definition of, 263

Module
definition of, 263

Multi-level security
definition of, 264

Multiple-document interface (MDI)
definition of, 264

Multi-tasking verification utility
description, 291
– 306 –

___ Index
N
Natural Construct nucleus

definition of, 264
Natural data area

simulation, 198
Allocate method, 201
application object properties or
methods, 201
creating NaturalDataArea objects, 202
data area definitions, 198
definition, 198
diagram of components, 198
diagram of objects in data area
simulation, 200
example of a data area definition, 208
example of code for data area
definition, 199
example of code for redefining, 207
example of code to declare and
initialize the application object, 201
example of code using structure name
as a qualifier, 206
example of reading arrays with the
GetField method, 208
example of reading occurrences of the
Item array, 209
example of specifying a field with
occurrences, 208
example of using redefined fields, 207
Initialize method, 201
LIFDirectory property, 201
list of features in data area definitions,
199
MainLibrary property, 201
NaturalDataArea class, 202–203
NaturalDataArea object, 206
NaturalFieldDef class, 210
simulation objects, 200
syntax for Allocate method, 202

Natural Debugging facility
definition of, 264

Natural security
user information, 173

Natural source areas
writing information to, 236

Natural subprograms
example of creating, 238–239

PDA, 238
on mainframe server, 30

NaturalDataArea object
troubleshooting, 185

Navigation bar
definition of, 264

Node
definition of, 264

Nodes
marking for refresh, 70
removing from cache, 70

Nucleus
definition of, 264

O
Object

definition of, 264
Object factory

definition of, 264
Object Factory wizard

definition of, 264
Object library

definition of, 264
OLE

definition of, 265
OLE automation server

definition of, 265
Options window

customizing the ABO
description, 99

Overflow condition
definition of, 265

Overriding
1:V variables, 108
domain steplib chain, 115

P
Package

definition of, 265
Page handler

definition of, 265
Page Handler wizard

definition of, 265
Parameter alignment problems

diagnosing, 177
– 307 –

Construct Spectrum SDK Reference ___
Parameter and debug data
accessing the Maintain User Table
panel, 173
using, 172

Parameter data areas
application services

data size limitations, 237
example of creating, 238
simulation by Spectrum Dispatch Client,
33

Parameters
externalizing, 237

Parent model
definition of, 265

Parse area
definition of, 265

Partner products
Construct Spectrum, 22

Ping
definition of, 265

Platform
definition of, 265

Predict data dictionary
relationship with Construct Spectrum,
22

Predict set up tasks
business data types, 40
default business object description, 42
default GUI controls, 40
default hold field, 41
default primary key, 41
field headings, 39
file volume information, 42
verification rules, 40, 42

Prerequisites
assumed knowledge, 14

Preserving characters
Translation program, 181

Primary keys
defaulting from Predict, 41

Printable characters
Translation program, 181

Programming languages
incorporating with Construct Spectrum,
23

Project
definition of, 265

Project group
definition of, 265

Properties
CheckFieldSpec, 203, 209
Decimals, 210
DefinedRank, 210
Definition, 203, 209
Field, 203
FieldDef, 204, 209
FieldDefs, 204, 210
FieldRef, 204
Format, 210
FormatLength, 210
FromIndex, 211
Length, 211
Level, 211
LevelTypeTrail, 211
LibraryImageFile, 204
LIFDirectory, 201
MainLibrary, 201
Name, 204, 212
PackedData, 204
PackedDataLength, 205, 210
Rank, 212
Redefined, 212
Structure, 212
ThruIndex, 211–212
TransactionActive, 224

Property
definition of, 265

R
Regenerate/preserve status

definition of, 266
Remote call

definition of, 266
Replacement tag

definition of, 266
Reports

using, 63
RequestProperty properties

Spectrum Dispatch Client, 186
Resource

definition of, 266
Run

definition of, 266
– 308 –

___ Index
Running
applications, 253

Runtime errors
listing, 165
results, 175

S
Security

defining for a domain, 47
Security cache

definition of, 266
Security services

on mainframe server, 31
Sending

responses back to client, 272
Server

components
setting up for communication with
client, 236

definition of, 266
Server application

definition of, 266
Service

definition of, 266
Service exit

definition of, 266
Service log

definition of, 266
Set up checklists

see Checklists, 38
Setting

trace options, 167
Setting up

security for your application, 43
Settings for Profile tab

Configuration editor, 52
Shutdown

definition of, 266
Software development kit (SDK)

definition of, 266
SPAETB data area

description, 280
Specifying

block handling on the server, 118
general package parameters

Business-Object-Super-Model, 78
overrides, 118

specific package parameters
Business-Object-Super-Model, 79, 81

standard parameters
Business-Object-Super-Model, 77

Specifying defaults
hold key, 41
primary key, 41

Spectrum administration
on mainframe server, 31

Spectrum client/server application
definition of, 266

Spectrum Control record
definition of, 267

Spectrum Dispatch Client
advanced features, 228

1 to V fields, 233
FieldRef property, 228

application service definitions, 215
example in a library image file, 216

CALLNAT simulation, 33
client/server communication, 213

application service, 197
components, 197
data area simulation, 198
level 1 block optimization, 213

client/server communication
components

definitions, 197
dispatch service definitions, 197
Dispatcher objects, 197

creating applications
See creating applications, 195

data area simulation components, 197
data area allocator, 197
data area definitions, 197
data area objects, 197

database transaction control, 34
Dispatcher objects and dispatch service
definitions, 218

compression and encryption, 223
database transaction control, 224
diagram of Dispatcher objects, 218
diagram of timeout functionality, 222
example of code to create Dispatcher
objects, 218
example of implementing level 1
block optimization, 220
example of resuming a call, 223
list of error types, 225
remote subprogram invocation, 220
– 309 –

Construct Spectrum SDK Reference ___
service selection, 219
timeout, retry, and resume handling,
221
tracing, 224
user identification and authentication
application properties, 226

encapsulation of Entire Broker calls, 33
functions

client/server communication, 197
Natural data area simulation, 197

initializing
Project Properties dialog, 251

library image files and the steplib chain,
227

syntax of the steplib definition, 227
overview, 194
properties, 185
with Microsoft IIS, 35

Spectrum Dispatch Client (SDC)
definition of, 267
on Windows platform, 33

Spectrum dispatch service
definition of, 267
on mainframe server, 31
running online, 174

Spectrum security service
definition of, 267

Spectrum security services
on mainframe server, 31

Spectrum Service Manager
definition of, 267

Spectrum service settings
definition of, 267

Spectrum web application
definition of, 267

Spectrum web framework
definition of, 267

Spectrum XML Cache Viewer
overview, 68
refreshing, 70

SPSTLATE utility, 290
SPUETB subprogram

wrapping Broker ACI calls, 278
SPUREPLY subprogram

sending responses back to client, 272
Status bar

definition of, 267

Steplib chain
defining, 43
definition of, 267

Sub Main procedure
definition of, 267

Subprogram proxies
generating using model, 240
invoking online, 175
setting trace code option, 107
Spectrum dispatch service, 31

Subprogram proxy
definition of, 267
methods generated, 111
on mainframe server, 30
overview

application service definition methods
See Application service definitions,
111

prerequisites
Construct Spectrum Administration
subsystem data files, 111
generating subprograms and object
PDAs, 111

versioning, 120
security implications, 120

Subprogram Proxy tab
Diagnostics window, 178

Subprogram-Proxy model
adding user exits, 109
overview, 104
standard parameters, 106
using, 105

Subprograms
behavior, 237
interfacing, 236

Super model
definition of, 268

T
Target module

definition of, 268
Target object

definition of, 268
Target subprogram

definition of, 268
– 310 –

___ Index
Template parser
definition of, 268

Timing issues
application services, 237

Toolbar
definition of, 268

Toolbar button
definition of, 268

Toolkit
definition of, 268

Tools
debugging

client/server applications, 163
Trace options

definition of, 268
setting, 167
Subprogram Proxy Trace Options
window, 168

Trace-Option(1)
description, 168

Trace-Option(2)
description, 172
Generate Trace Code field, 172
valid values, 172

Transferring
data between two platforms, 289

Translating
character sets, 290

Translation Mappings window
description, 182

Translation of character sets, 31
Translations program

ASCII/EBCDIC, 181
character sets, 181

altered, 181
preserved, 181
printable, 181

translation tables, 181
Troubleshooting

Construct Spectrum Add-In, 184
Construct Spectrum dispatch client
properties, 185

Type library
definition of, 268

U
Updating

application service definitions, 113
LIF files, 114

Upload data
definition of, 268

User exits
customizing the ABO, 100

User interface
creating, 251

example form, 251
Utilities

log, 292
multi-tasking verification, 291
sending responses back to client

SPUREPLY subprogram, 272
transferring data between two platforms

Conversation Factory, 289
translating character sets

SPSTLATE subprogram, 290
wrapping Broker ACI calls

SPUETB subprogram, 278
Utility.bas

description, 91

V
Variant

definition of, 268
VB-Client-Server-Super-Model

definition of, 268
Verification rules

definition of, 269
setting up in Predict, 40, 42

Visual Basic browse object
definition of, 269

Visual Basic business object
definition of, 269
on Windows platform, 34

Visual Basic maintenance object
definition of, 269

Volume information
see File volume information
– 311 –

Construct Spectrum SDK Reference ___
W
Web application

with Microsoft IIS, 35
Web application ASP

definition of, 269
Web class

definition of, 269
Web Super wizard

definition of, 269
Wildcard

definition of, 269
Wrapping

Broker ACI calls, 278

X
XML extract

definition of, 270
– 312 –

	Preface
	Prerequisite Knowledge
	Purpose and Structure of this Documentation
	How to Use This Documentation
	Create a Web Application
	Create a Client/Server Application
	Without Using the Client Framework

	Other Resources
	Related Documentation
	Construct Spectrum SDK
	Construct Spectrum
	Natural Construct

	Other Documentation
	Related Courses

	Introduction
	What is Construct Spectrum?
	Partner Products
	Data Dictionary and Repository
	Middleware
	Programming Languages
	Multiple Development Environments

	Construct Spectrum Development Environments
	Construct Spectrum Administration Subsystem
	Construct Windows Interface
	Visual Basic
	Client/Server Applications
	Web Applications

	Types of Construct Spectrum Applications
	Architecture of Construct Spectrum Applications
	Mainframe Server Components
	System Functions

	Windows Components
	Internet Information Server (IIS) Components
	Internet/Intranet Components

	Overview of the Development Process

	Setting up the Mainframe Environment
	Overview
	Setting Up Predict Definitions
	Field Headings
	Business Data Types (BDTs)
	Default GUI and HTML Controls
	Verification Rules
	Default Primary Keys and Hold Fields
	Define a Default Primary Key
	Define a Default Hold Key

	Default Business Object Description
	Descriptive Browse Fields
	File Volume Information in Client/Server Applications

	Creating a Domain and Setting Up Security
	Step 1: Define the Steplib Chain
	Step 2: Define the Domain
	Step 3: Define Security for the Domain

	Features of the Wizards
	Using the Configuration Editor
	Invoke the Configuration Editor
	Modify the Profile Settings
	Create a New Configuration Profile
	Modify the Path Settings

	Working with Code
	Implied User Exits
	Preserve Customizations to Generated Code

	Regenerating Modules
	Regenerate Individual Modules
	Regenerate Multiple Modules
	Regenerate External Files

	Editing Modules
	Generating and Reviewing Reports
	Access Reports
	Review a Stored Report
	Specify Report Detail

	Use Reports with a Code Comparison Tool

	Using The Spectrum Cache
	Overview
	Mark Nodes to be Refreshed
	Remove Nodes From the Spectrum Cache

	Using the Business-Object-Super- Model
	Overview
	Before You Begin
	Check the Model Defaults
	Set up Default Values in Predict
	Establish a Naming Convention
	Set Up the Application Environment

	Generating Packages
	Step 1: Define the Standard Parameters
	Step 2: Define the General Package Parameters
	Step 3: Define the Specific Package Parameters
	Step 4: Create Another Package (Optional)
	Step 5: Generate the Modules
	Generation Subsystem

	Troubleshooting

	Using ActiveX Business Objects
	Overview
	Using the ABO Project Wizard
	Create the ABO Project
	Framework Components for the ABO Project

	Using the ABO Wizard
	Customizing the ABO
	Customize Properties Generated for the ABO
	Opt Column

	Customize the ABO within User Exits
	GetAppService_.SetMethodAndBlocks
	ICSTBrowseObject_LogicalKeyInfo.Extra
	ICSTPersist_InstanceData.Get.Extra
	ICSTPersist_InstanceData.Let.Extra
	ICSTPropertyInfo_PropertyInfo.Get.Extra
	<CounterPropertyName>.Get.NullList

	Using the Subprogram-Proxy Model
	Overview
	Accessing System Files
	Generating a Subprogram Proxy
	Step 1: Specify Standard Parameters
	Step 2: Specify the Number of Occurrences Returned
	Step 3: Add User Exits
	Step 4: Generate the Subprogram Proxy

	Generating Methods
	Access the Application Service Definitions
	Add a Method
	Step 1: Create the Method
	Step 2: Update the Application Service Definition
	Step 3: Update the Library Image File

	Override the Steplib Chain for the Domain

	Overriding Block Handling
	Default Block Handling
	Maintenance Subprogram Blocks Sent to Server
	Maintenance Subprogram Blocks Returned to Client
	Browse Subprogram Blocks Sent to Server
	Browse Subprogram Blocks Returned to Client

	Specify Overrides
	Step 1: Define Block Handling On Server
	Disable a Block Unconditionally
	Send Blocks to the Client Conditionally

	Step 2: Define Block Handling On Client

	Versioning Support
	Security Implications

	Debugging Support

	Using Business Data Types (BDTs)
	Overview
	Understanding and Using BDTs
	Benefits of Using BDTs
	Relationship With Visual Basic Data Types
	Composition of a BDT
	Name
	Conversion Routine
	Modifiers

	Elements of a BDT
	BDT Controller
	How the Client Framework Uses BDTs

	Conversion Routines
	ConvertToDisplay Method
	ConvertFromDisplay Method
	ConvertInPlace Method
	CreateSampleString Method

	Modifiers
	Natural Formats

	Handling Errors Returned from a BDT Conversion Routine
	How Web Applications Use BDTs
	BDTs Supplied With Construct Spectrum
	Alpha
	Boolean
	Time
	Numeric
	Currency
	Date

	Referencing BDTs in Predict
	Defining BDTs
	Name
	Modifiers
	Natural Formats
	Variant Data Types

	Returning Conversion Error Information
	Handling Runtime Errors
	Creating and Customizing BDTs
	BDTs and the Client/Server Framework
	Understanding the BDT Objects

	Create BDT Conversion Routines
	Register a BDT
	Deregister a BDT
	Locate the Conversion Routine for a BDT
	Create a Natural-to-BDT Mapper
	Other Considerations
	Use One Conversion Routine with Multiple BDTs
	Placement of the Conversion Routine
	Override a Supplied BDT
	Reference BDTs in Your Application

	BDTs and the Web Framework
	Implement BDTs in the Web Framework
	Register BDTs in the Web Framework
	Register BDT Classes Using the Windows Registry
	Explicitly Register BDT Classes

	BDT Conversion Object
	Create the BDT Class
	Other BDT Controller Methods
	Create a Natural-to-BDT Mapper

	Create One BDT Class with Multiple BDTs

	Debugging Your Client/Server Application
	Overview
	Communication Errors
	Communication Error Handling

	Traditional Debugging Tools
	Construct Spectrum Debugging Tools

	Types of Errors
	Visual Basic Runtime Errors
	Communication Errors
	Natural Runtime Errors
	Construct Spectrum-Related Errors
	Errors that Do Not Return an Error Message

	Generating Debug Data
	Save Parameter and Debug Data
	Set Trace Options
	Trace Option(1)
	Create Debug Data

	Trace Option(2)

	Specify Where to Save Debug Data
	Access the Maintain User Table Panel

	Running Spectrum Dispatch Services Online
	Use the INPUT Statement as a Debugging Tool

	Using Natural Debugging Tools
	Invoke Subprogram Proxies Online
	Access the Invoke Proxy Function

	Debugging Tools on the Client and Server
	Diagnostics Window
	Translations Program

	Troubleshooting
	Registry Usage
	SDC.ini
	SDCApp.ini
	Check for Necessary DLLs
	Construct Spectrum Add-In
	Useful SDC Properties
	Application Object
	NaturalDataArea Object
	Dispatcher Object
	RequestProperty Property

	Deploying Your Client/Server Application
	Transferring Data
	Data Transfer Utilities
	Construct Spectrum Administration Subsystem

	Distributing Your Application
	Step 1: Create the Executable File
	Step 2: Collect Files For Installation
	Step 3: Install the Client Application
	Step 4: Run the Application

	Using the Spectrum Dispatch Client
	Overview
	Calling a Natural Subprogram
	Step 1: Create Parameter Data Area Instances
	Step 2: Assign Values to the Fields
	Step 3: Use the CallNat Method on the Client
	Step 4: Check the Success of the CALLNAT
	Summary

	Spectrum Dispatch Client Components
	Natural Data Area Simulation
	Data Area Definitions
	Data Area Simulation Objects
	Application Object
	Create NaturalDataArea Objects
	NaturalDataArea Class
	Case Sensitivity
	Alphanumeric Fields
	Fully Qualified Field Names
	Redefined Fields
	Errors When Compiling
	Read Arrays and Structures
	Runtime Errors

	DataDefinitionArea Class
	NaturalFieldDef Class
	Client/Server Communication
	Level 1 Block Optimization

	Application Service Definitions
	Dispatcher Objects and Dispatch Service Definitions
	Service Selection
	Remote Subprogram Invocation
	Timeout, Retry, and Resume Handling
	Compression and Encryption
	Tracing
	Database Transaction Control
	Error Reporting

	User Identification and Authentication
	Library Image Files and the Steplib Chain

	Advanced Features
	FieldRef Property
	1:V Fields

	Creating Applications Without the Framework
	Setting Up the Server Components
	Create or Select Application Services
	No Terminal I/O
	Subprogram Interface
	No Global Data Area (GDA)
	Parameter Data Area (PDA) Data Size Limitation
	Subprogram Behavior
	Externalize Parameters
	Timing Issues

	Example of Creating a Simple Natural Subprogram

	Generating Subprogram Proxies
	Subprogram-Proxy Model
	Application Service Definition

	Creating the Library Image Files (LIFs)
	Construct Spectrum Add-In
	Before You Start
	Download Definitions

	Developing the Client Application
	Step 1: Create a New Project
	Step 2: Add a Reference to the SDC Object Library
	Step 3: Write Code to Initialize the SDC
	Step 4: Create the User Interface
	Step 5: Write Code to Call the Subprogram
	Step 6: Run the Application

	Appendix A: Glossary
	Appendix B: Utilities
	Response Subprogram
	Features and Benefits
	Response Length Limitation
	Supported Methods
	Message Protocol
	Call Interface
	SPAREPLY Data Area
	SPAREPM Data Area

	Spectrum Interface Subprogram
	Features and Benefits
	Broker Error Handling
	Error Logging
	Shutdown Requests
	Server Timeouts
	Command Handling

	SPUETB Interface
	Data Areas
	SPAETB Data Area
	ETBCB Data Area
	SEND-BUFFER
	RECEIVE-BUFFER
	RESERVED-AREA
	CDPDA-M

	Using SPUETB
	CMD TRACE
	Valid Keywords

	Trace Response
	Test the Trace Facility
	CMD CALLNAT

	Conversation Factory Utility
	Character Translation Subprogram
	Determine a Character Set

	Multi-Tasking Verification Utility
	Log Utilities
	Spectrum Log Utilities
	Construct Spectrum Control Record Log Utilities
	Domain Log Utilities
	Spectrum Group Log Utilities
	Application Service Definition Log Utilities
	Spectrum Steplib Log Utilities
	User and Group Log Utilities

	Index

